1. I. Novak, Photoelectron spectroscopy of organic pollutants: chlorophenols, J. Electron. Spectrosc. Relat. Phenom., 239 (2020) 146919, doi: 10.1016/j.elspec.2019.146919.
  2. Z. Hao, H.T. Xu, Z.Y. Feng, C.C. Zhang, X. Zhou, Z.F. Wang, J.H. Zheng, X.Q. Zou, Spatial distribution, deposition flux, and environmental impact of typical persistent organic pollutants in surficial sediments in the Eastern China Marginal Seas (ECMSs), J. Hazard. Mater., 407 (2021) 124343, doi: 10.1016/j.jhazmat.2020.124343.
  3. E. Brillas, C.A. Martinez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Appl. Catal., B, 166 (2015) 603–643.
  4. V.L. Prasanna, H. Mamane, V.K. Vadivel, D. Avisar, Ethanolactivated granular aerogel as efficient adsorbent for persistent organic pollutants from real leachate and hospital wastewater, J. Hazard. Mater., 384 (2020) 121396, doi: 10.1016/j.jhazmat.2019.121396.
  5. A. Asghar, M.M. Bello, A.A. Raman, W.M.A.W. Daud, A. Ramalingam, S.B. Zain, Predicting the degradation potential of Acid blue 113 by different oxidants using quantum chemical analysis, Heliyon, 5 (2019) e02396, doi: 10.1016/j.heliyon.2019.e02396.
  6. R. Kishor, D. Purchase, G.D. Saratale, R.G. Saratale, L.F.R. Ferreira, M. Bilal, R. Chandra, R.N. Bharagava, Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety, J. Environ. Chem. Eng., 9 (2021) 105012, doi: 10.1016/j.jece.2020.105012.
  7. P. Mandal, B.K. Dubey, A.K. Gupta, Review on landfill leachate treatment by electrochemical oxidation: drawbacks, challenges and future scope, Waste Manage., 69 (2017) 250–273.
  8. V. Vaezzadeh, M.W. Thomes, T. Kunisue, N.M. Tue, G. Zhang, M.P. Zakaria, Y.A. Affendi, F.C. Yap, L.L. Chew, H.W. Teoh, C.W. Lee, C.W. Bong, Examination of barnacles’ potential to be used as bioindicators of persistent organic pollutants in coastal ecosystem: a Malaysia case study, Chemosphere, 263 (2021) 128272, doi: 10.1016/j.chemosphere.2020.128272.
  9. P.E. Payandeh, N. Mehrdadi, P. Dadgar, Study of biological methods in landfill leachate treatment, Open J. Ecol., 7 (2017) 568–580.
  10. S. Renou, J.G. Givaudan, S. Poulain, F. Dirassouyan, P. Moulin, Landfill leachate treatment: review and opportunity, J. Hazard. Mater., 150 (2008) 468–493.
  11. F. Di Capua, F. Adani, F. Pirozzi, G. Esposito, A. Giordano, Air side-stream ammonia stripping in a thin film evaporator coupled to high-solid anaerobic digestion of sewage sludge: process performance and interactions, J. Environ. Manage., 295 (2021) 113075, doi: 10.1016/j.jenvman.2021.113075.
  12. L. Miao, G. Yang, T. Tao, Y.Z. Peng, Recent advances in nitrogen removal from landfill leachate using biological treatments – a review, J. Environ. Manage., 235 (2019) 178–185.
  13. Y. Deng, N. Chen, W. Hu, H.S. Wang, P.J. Kuang, F.X. Chen, C.P. Feng, Treatment of old landfill leachate by persulfate enhanced electro-coagulation system: improving organic matters removal and precipitates settling performance, Chem. Eng. J., 424 (2021) 130262, doi: 10.1016/j.cej.2021.130262.
  14. M.A.M. Reshadi, A. Bazargan, G. Mckay, A review of the application of adsorbents for landfill leachate treatment: focus on magnetic adsorption, Sci. Total Environ., 731 (2020) 138863, doi: 10.1016/j.scitotenv.2020.138863.
  15. Q.T. An, Z. Zhang, H.H. Su, X. Li, Review on landfill leachate treatment methods, IOP Conf. Ser.: Earth Environ. Sci., 565 (2020) 012038, doi: 10.1088/1755-1315/565/1/012038.
  16. B.P. Chang, A. Gupta, T.H. Mekonnen, Flame synthesis of carbon nanoparticles from corn oil as a highly effective cationic dye adsorbent, Chemosphere, 282 (2021) 131062,
    doi: 10.1016/j.chemosphere.2021.131062.
  17. H.-Z. Li, Y.-N. Zhang, J.-Z. Guo, J.-Q. Lv, W.-W. Huang, B. Li, Preparation of hydrochar with high adsorption performance for methylene blue by co-hydrothermal carbonization of polyvinyl chloride and bamboo, Bioresour. Technol., 337 (2021) 125442, doi: 10.1016/j.biortech.2021.125442.
  18. A. Fallahi, F. Rezvani, H. Asgharnejad, E.K. Nazloo, N. Hajinajaf, B. Higgins, Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: a review, Chemosphere, 272 (2021) 129878, doi: 10.1016/j.chemosphere.2021.129878.
  19. P.R. Shukla, S. Wang, H. Sun, H.M. Ang, M. Tade, Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution, Appl. Catal., B, 100 (2010) 529–534.
  20. F. Wei, D. Liao, Y. Lin, C. Hu, J.Q. Ju, Y.S. Chen, D.L. Feng, Electrochemical degradation of reverse osmosis concentrate (ROC) using the electrodeposited Ti/TiO2-NTs/PbO2 electrode, Sep. Purif. Technol., 258 (2021) 118056, doi: 10.1016/j. seppur.2020.118056.
  21. X. Liu, L. Min, X. Yu, Z. Zhou, L. Sha, S.T. Zhang, Changes of photoelectrocatalytic, electrocatalytic and pollutant degradation properties during the growth of β-PbO2 into black titanium oxide nanoarrays, Chem. Eng. J., 417 (2021) 127996, doi: 10.1016/j.cej.2020.127996.
  22. S. Boukhchina, H. Akrout, D. Berling, L. Bousselmi, Highly efficient modified lead oxide electrode using a spin coating/electrode position mode on titanium for electrochemical treatment of pharmaceutical pollutant, Chemosphere, 221 (2019) 356–365.
  23. D. Guo, Y.B. Guo, Y.X. Huang, Y.Y. Chen, X.C. Dong, H. Chen, S.P. Li, Preparation and electrochemical treatment application of Ti/Sb–SnO2-Eu&rGO electrode in the degradation of clothianidin wastewater, Chemosphere, 265 (2021) 129126, doi: 10.1016/j.chemosphere.2020.129126.
  24. S. Man, H. Bao, H. Yang, K. Xu, A.Q. Li, Y.T. Xie, Y. Jian, W.J. Yang, Z.H. Mo, X.M. Li, Preparation and characterization of Nano-SiC doped PbO2 electrode for degradation of toluene diamine, J. Alloys Compd., 859 (2021) 157884, doi: 10.1016/j.jallcom.2020.157884.
  25. M. Pierpaoli, P. Jakobczyk, M. Sawczak, A. Luczkiewicz, S. Fudala-Ksiazek, R. Bogdanowicz, Carbon nanoarchitectures as high-performance electrodes for the electrochemical oxidation of landfill leachate, J. Hazard. Mater., 401 (2021) 123407, doi: 10.1016/j.jhazmat.2020.123407.
  26. S. Chen, P. He, X. Wang, F. Xiao, P.C. Zhou, Q.H. He, L.P. Jia, F.Q. Dong, H. Zhang, B. Jia, H.T. Liu, B. Tang,
    Co/Sm-modified Ti/PbO2 anode for atrazine degradation: effective electrocatalytic performance and degradation mechanism, Chemosphere, 268 (2021) 128799, doi: 10.1016/j.chemosphere.2020.128799.
  27. M. Chen, X. Zhao, C. Wang, S. Pan, C. Zhang, Y.C. Wang, Electrochemical oxidation of reverse osmosis concentrates using macroporous Ti-ENTA/SnO2-Sb flow-through anode: degradation performance, energy efficiency and toxicity assessment, J. Hazard. Mater., 401 (2021) 123295,
    doi: 10.1016/j.jhazmat.2020.123295.
  28. J. Cai, M. Zhou, X. Du, X. Xu, Enhanced mechanism of 2,4-dichlorophenoxyacetic acid degradation by electrochemical activation of persulfate on blue-TiO2 nanotubes anode, Sep. Purif. Technol., 254 (2021) 117560, doi: 10.1016/j.seppur.2020.117560.
  29. W. Zhou, X. Meng, J. Gao, A.N. Alshawabkeh, Hydrogen peroxide generation from O2 electroreduction for environmental remediation: a state-of-the-art review, Chemosphere, 225 (2019) 588–607.
  30. J. Zhang, W. Zhou, L. Yang, Y.C. Chen, Y.Y. Hu, Co-N-doped MoO2 modified carbon felt cathode for removal of EDTA-Ni in electro-Fenton process, Environ. Sci. Pollut. Res., 25 (2018) 22754–22765.
  31. K. Zhu, J. Ouyang, J.M. Liu, Y.X. Zhu, Q. Zeng, Y.J. Cui, Preparation and photocatalytic hydrogen evolution from water of oxygen doped carbon nitride nanosheets, Chin. J. Inorg. Chem., 35 (2019) 1005–1012.
  32. M.A. Radi, N. Nasirizadeh, M. Rohani-Moghadam, M. Dehghani, The comparison of sonochemistry, electrochemistry and sonoelectrochemistry techniques on decolorization of C.I. Reactive Blue 49, Ultrason. Sonochem., 27 (2015) 609–615.
  33. M. Sharma, A. Halder, R. Vaish, Effect of Ce on piezo/photocatalytic effects of Ba0.9Ca0.1CexTi1–xO3 ceramics for dye/pharmaceutical waste water treatment, Mater. Res. Bull., 122 (2020) 110647, doi: 10.1016/j.materresbull.2019.110647.
  34. R. Li, X.K. Lu, B.B. Yan, N. Li, G.Y. Chen, Z.J. Cheng, L.A. Hou, S.B. Wang, X.G. Duan, Sludge-derived biochar toward sustainable peroxymonosulfate activation: regulation of active sites and synergistic production of reaction oxygen species, Chem. Eng. J., 440 (2022) 135897, doi: 10.1016/j.cej.2022.135897.
  35. Y. Yang, L.C. Kao, Y.Y. Liu, K. Sun, H.T. Yu, J.H. Guo, S.Y.H. Liou, M.R. Hoffmann, Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment, ACS Catal., 8 (2018) 4278–4287.
  36. L.Y. Wu, Q. Zhang, J.M. Hong, Z.Y. Dong, J. Wang, Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe2O4–x, Chemosphere, 221 (2019) 412–422.
  37. J. Ding, L.J. Bu, Q.L. Zhao, F.T. Kabutey, L.L. Wei, D.D. Dionysiou, Electrochemical activation of persulfate on BDD and DSA anodes: electrolyte influence, kinetics and mechanisms in the degradation of bisphenol A, J. Hazard. Mater., 388 (2020) 121789, doi: 10.1016/j.jhazmat.2019.121789.
  38. J. Cai, M. Zhou, Y. Pan, X.D. Du, X.Y. Lu, Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on blue-TiO2 nanotubes anode, Appl. Catal., B, 257 (2019) 117902, doi: 10.1016/j.apcatb.2019.117902.
  39. J. Zuo, J. Zhu, M. Zhang, Q.M. Hong, J. Han, J.F. Liu, Synergistic photoelectrochemical performance of La-doped RuO2-TiO2/Ti electrodes, Appl. Surf. Sci., 502 (2020) 144288, doi: 10.1016/j.apsusc.2019.144288.
  40. J. Li, J.F. Yan, G. Yao, Y.H. Zhang, X. Li, B. Lai, Improving the degradation of atrazine in the three-dimensional (3D) electrochemical process using CuFe2O4 as both particle electrode and catalyst for persulfate activation, Chem. Eng. J., 361 (2019) 1317–1332.
  41. J.L. Wang, S.Z. Wang, Reactive species in advanced oxidation processes: formation, identification and reaction mechanism, Chem. Eng. J., 401 (2020) 126158, doi: 10.1016/j.cej.2020.126158.
  42. L.J. Bu, S.Q. Zhou, Z. Shi, L. Deng, N.Y. Gao, Removal of 2-MIB and geosmin by electrogenerated persulfate: performance, mechanism and pathways, Chemosphere, 168 (2017) 1309–1316.
  43. S.Q. Zhou, L.J. Bu, Y.H. Yu, X. Zou, Y.S. Zhang, A comparative study of microcystin-LR degradation by electrogenerated oxidants at BDD and MMO anodes, Chemosphere, 165 (2016) 381–387.
  44. A. Kowal, M. Li, M. Shao, K. Sasaki, M.B. Vukmirovic, J. Zhang, N.S. Marinkovic, P. Liu, A.I. Frenkel, R.R. Adzic, Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2, Nat. Mater., 8 (2009) 325–330.
  45. L. Gan, Y. Wu, H. Song, C. Lu, S.P. Zhang, A.M. Li, Self-doped TiO2 nanotube arrays for electrochemical mineralization of phenols, Chemosphere, 226 (2019) 329–339.
  46. X. Li, Z.K. Kou, J. Wang, Manipulating interfaces of electrocatalysts down to atomic scales: fundamentals, strategies, and electrocatalytic applications, Small Methods, 5 (2020) 2001010, doi: 10.1002/smtd.202001010.
  47. F. Zahmatkeshani, M. Tohidi, Synthesis of SnO2, Zn-doped SnO2 and Zn2SnO4 nanostructure-based hierarchical architectures by using deep eutectic precursors and their photocatalytic application, Cryst. Eng. Commun., 21 (2019) 6758–6771.
  48. R.Z. Xie, X.Y. Meng, P.Z. Sun, J.F. Niu, W.J. Jiang, L. Bottomley, D. Li, Y.S. Chen, J. Crittenden, Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: reaction kinetics and mass transfer impact, Appl. Catal., B, 203 (2017) 515–525.
  49. M.Z. Wu, L.J. Lu, Y.B. Yang, Y. Chang, R.X. Chen, Y. Li, J. Du, C.Y. Tao, Z.H. Liu, Y.J. Liu, L. Gou, S.H. Pan, D. Ran, J. Li, A triethanolamine-assisted fabrication of stable Sb doped-SnO2/Ti electrode for electrocatalytic oxidation of rhodamine B, Colloids Surf., A, 634 (2021) 127976, doi: 10.1016/j. colsurfa.2021.127976.
  50. A. Chen, S. Xia, Z. Ji, H.W. Lu, Insights into the origin of superhigh oxygen evolution potential of Cu doped SnO2 anodes: a theoretical study, Appl. Surf. Sci., 471 (2019) 149–153.
  51. C. Costentin, D.G. Nocera, C.N. Brodsky, Multielectron, multisubstrate molecular catalysis of electrochemical reactions: formal kinetic analysis in the total catalysis regime, Proc. Natl. Acad. Sci. U.S.A., 114 (2017) 11303–11308.
  52. X.B. Qian, K.F. Peng, L. Xu, S.Y. Tang, W.L. Wang, M. Zhang, J.F. Niu, Electrochemical decomposition of PPCPs on hydrophobic Ti/SnO2-Sb/La-PbO2 anodes: relationship between surface hydrophobicity and decomposition performance, Chem. Eng. J., 429 (2022) 132309, doi: 10.1016/j.cej.2021.132309.
  53. L.J. Bu, S.M. Zhu, S.Q. Zhou, Degradation of atrazine by electrochemically activated persulfate using BDD anode: role of radicals and influencing factors, Chemosphere, 195 (2018) 236–244.
  54. H.R. Song, L.X. Yan, J. Jiang, J. Ma, Z.X. Zhang, J.M. Zhang, P.X. Liu, T. Yang, Electrochemical activation of persulfates at BDD anode: radical or non-radical oxidation?, Water Res., 128 (2018) 393–401.
  55. N. Pueyo, M.P. Ormad, N. Miguel, P. Kokkinos, A. Ioannidi, D. Mantzavinos, Z. Frontistis, Electrochemical oxidation of butyl paraben on boron doped diamond in environmental matrices and comparison with sulfate radical-AOP, J. Environ. Manage., 269 (2020) 110783, doi: 10.1016/j.jenvman.2020.110783.
  56. J.J. Cai, M.H. Zhou, Y. Liu, A. Savall, K.G. Serrano, Indirect electrochemical oxidation of
    2,4-dichlorophenoxyacetic acid using electrochemically-generated persulfate, Chemosphere, 204 (2018) 163–169.
  57. Y.U. Shin, H.Y. Yoo, Y.Y. Ahn, M.S. Kim, K. Lee, S. Yu, C. Lee, K. Cho, H.I. Kim, J. Lee, Electrochemical oxidation of organics in sulfate solutions on boron-doped diamond electrode: multiple pathways for sulfate radical generation, Appl. Catal., B, 254 (2019) 156–165.
  58. P.Z. Duan, D.D. Chen, X. Hu, Tin dioxide decorated on Ni-encapsulated nitrogen-doped carbon nanotubes for anodic electrolysis and persulfate activation to degrade cephalexin: mineralization and degradation pathway, Chemosphere, 269 (2021) 128740, doi: 10.1016/j.chemosphere.2020.128740.
  59. S. Dimitriadou, Z. Frontistis, A. Petala, G. Bampos, D. Mantzavinos, Carbocatalytic activation of persulfate for the removal of drug diclofenac from aqueous matrices, Catal. Today, 355 (2020) 937–944.
  60. Y.-J. Shih, C.-P. Huang, Y.-H. Chan, Y.-H. Huang, Electrochemical degradation of oxalic acid over highly reactive nano-textured γ- and α-MnO2/carbon electrode fabricated by KMnO4 reduction on loofah sponge-derived active carbon, J. Hazard. Mater., 379 (2019) 120759, doi: 10.1016/j.jhazmat.2019.120759.
  61. M. Ferreira, I. Kuzniarska-Biernacka, A.M. Fonseca, I.C. Neves, O.S.G.P. Soares, M.F.R. Pereira, J.L. Figueiredo, P. Parpot, Electrochemical oxidation of amoxicillin on carbon nanotubes and carbon nanotube supported metal modified electrodes, Catal. Today, 357 (2020) 322–331.
  62. X. Duan, W. Wang, Q. Wang, X.Y. Sui, N. Li, L.M. Chang, Electrocatalytic degradation of perfluoroocatane sulfonate (PFOS) on a 3D graphene-lead dioxide (3DG-PbO2) composite anode: electrode characterization, degradation mechanism and toxicity, Chemosphere, 260 (2020) 127587,
    doi: 10.1016/j.chemosphere.2020.127587.
  63. Y.Y. Ahn, H. Bae, H.I. Kim, S.H. Kim, J.H. Kim, S.G. Lee, J. Lee, Surface-loaded metal nanoparticles for peroxymonosulfate activation: efficiency and mechanism reconnaissance, Appl. Catal., B, 241 (2019) 561–569.
  64. A. Farhat, J. Keller, S. Tait, J. Radjenovic, Removal of persistent organic contaminants by electrochemically activated sulfate, Environ. Sci. Technol., 49 (2015) 14326–14333.
  65. Z. Li, Y.Q. Sun, Y. Yang, Y.T. Han, T.S. Wang, J.W. Chen, D.C.W. Tsang, Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: mechanisms and pathway, Environ. Res., 183 (2020) 109156, doi: 10.1016/j.envres.2020.109156.
  66. M. Ding, W. Chen, H. Xu, Z. Shen, T. Lin, K. Hu, Q. Kong, G. Yang, Z.L. Xie, Heterogeneous Fe2CoTi3O10-MXene composite catalysts: synergistic effect of the ternary transition metals in the degradation of
    2,4-dichlorophenoxyacetic acid based on peroxymonosulfate activation, Chem. Eng. J., 378 (2019) 122177, doi: 10.1016/j.cej.2019.122177.
  67. L. Chen, C. Lei, Z. Li, B. Yang, X.W. Zhang, L.C. Lei, Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants, Chemosphere, 210 (2018) 516–523.
  68. X. Wu, X. Song, H. Chen, J.G. Yu, Treatment of phenolic compound wastewater using CuFe2O4/Al2O3 particle electrodes in a three-dimensional electrochemical oxidation system, Environ. Technol., 42 (2020) 4393–4404.
  69. H. Song, L. Yan, J. Ma, J. Jiang, G.Q. Cai, W.J. Zhang, Z.X. Zhang, J.M. Zhang, T. Yang, Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: efficiency, mechanism and influencing factors, Water Res, 116 (2017) 182–193.
  70. S. Garcia-Segura, E.V. Dos Santos, C.A. Martinez-Huitle, Role of sp3/sp2 ratio on the electrocatalytic properties of boron-doped diamond electrodes: a mini review, Electrochem. Commun., 59 (2015) 52–55.
  71. H. Lee, H.J. Lee, J. Jeong, J. Lee, N.B. Park, C. Lee, Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism, Chem. Eng. J., 266 (2015) 28–33.
  72. Y. Wang, M. Liu, X. Zhao, D. Cao, T. Guo, B. Yang, Insights into heterogeneous catalysis of peroxymonosulfate activation by boron-doped ordered mesoporous carbon, Carbon, 135 (2018) 238–247.
  73. X. Chen, W.D. Oh, T.T. Lim, Graphene- and CNTs-based carbocatalysts in persulfates activation: material design and catalytic mechanisms, Chem. Eng. J., 354 (2018) 941–976.
  74. C. Sun, T. Chen, Q. Huang, M.X. Zhan, X.D. Li, J.H. Yan, Activation of persulfate by CO2-activated biochar for improved phenolic pollutant degradation: performance and mechanism, Chem. Eng. J., 380 (2020) 122519, doi: 10.1016/j.cej.2019. 122519.
  75. S. Liu, Z. Zhang, F. Huang, Y.Z. Liu, L. Feng, J. Jiang, L.Q. Zhang, F. Qi, C. Liu, Carbonized polyaniline activated peroxymonosulfate (PMS) for phenol degradation: role of PMS adsorption and singlet oxygen generation, Appl. Catal., B, 286 (2021) 119921, doi: 10.1016/j.apcatb.2021.119921.
  76. H. Wang, W. Guo, B. Liu, Q.L. Wu, H.C. Luo, Q. Zhao, Q.S. Si, F. Sseguya, N.Q. Ren, Edge-nitrogenated biochar for efficient peroxydisulfate activation: an electron transfer mechanism, Water Res., 160 (2019) 405–414.
  77. H. Zhou, D. Lu, S. Fang, L. Chang, Y.C. Chen, Y.Y. Hu, Q.J. Luo, Prompting direct single electron transfer to produce nonradical 1O2/H* by electro-activating peroxydisulfate process with core-shell cathode, J. Environ. Manage., 287 (2021) 112294, doi: 10.1016/j.jenvman.2021.112294.
  78. Y.F. Song, J.M. Liu, F. Ge, X. Huang, Y. Zhang, H.H. Ge, X.J. Meng, Y.Z. Zhao, Influence of Nd-doping on the degradation performance of Ti/Sb-SnO2 electrode, J. Environ. Chem. Eng., 9 (2021) 105409, doi: 10.1016/j.jece.2021.105409.
  79. G. Sun, C. Wang, W. Gu, Q.J. Song, A facile electroless preparation of Cu, Sn and Sb oxides coated Ti electrode for electrocatalytic degradation of organic pollutants, Sci. Total Environ., 772 (2021) 144908, doi: 10.1016/j.scitotenv.2020.144908.
  80. S. Yu, C. Hao, Z. Li, R.R. Zhang, Y. Dang, J.J. Zhu, Promoting the electrocatalytic performance of PbO2 nanocrystals via incorporation of Y2O3 nanoparticles: degradation application and electrocatalytic mechanism, Electrochim. Acta, 369 (2021) 137671, doi: 10.1016/j.electacta.2020.137671.
  81. G.R. Wang, Y. Liu, J.W. Ye, Z.F. Lin, X.J. Yang, Electrochemical oxidation of methyl orange by a Magnéli phase Ti4O7 anode, Chemosphere, 241 (2020) 125084, doi: 10.1016/j.chemosphere.2019.125084.
  82. X. Zhang, D. Shao, W. Lyu, G.Q. Tan, H.J. Ren, Utilizing discarded SiC heating rod to fabricate SiC/Sb-SnO2 anode for electrochemical oxidation of wastewater, Chem. Eng. J., 361 (2019) 862–873.
  83. Y. Xia, G. Wang, L. Guo, Q.Z. Dai, X.J. Ma, Electrochemical oxidation of Acid Orange 7 azo dye using a PbO2 electrode: parameter optimization, reaction mechanism and toxicity evaluation, Chemosphere, 241 (2020) 125010, doi: 10.1016/j.chemosphere.2019.125010.
  84. N. Jiang, Y.C. Wang, Q.L. Zhao, Z.F. Ye, Application of Ti/IrO2 electrode in the electrochemical oxidation of the TNT red water, Environ. Pollut., 259 (2020) 113801, doi: 10.1016/j. envpol.2019.113801.
  85. S. Thomas, R. Sreekanth, V.A. Sijumon, U.K. Aravind, C.T. Aravindakumar, Oxidative degradation of Acid Red 1 in aqueous medium, Chem. Eng. J., 244 (2014) 473–482.
  86. X. Florenza, A.M.S. Solano, F. Centellas, C.A. Martinez-Huitle, E. Brillas, S. Garcia-Segura, Degradation of the azo dye Acid Red 1 by anodic oxidation and indirect electrochemical processes based on Fenton’s reaction chemistry. Relationship between decolorization, mineralization and products, Electrochim. Acta, 142 (2014) 276–288.
  87. W.Y. Wu, Z.H. Huang, T.T. Lim, Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water, Appl. Catal., A, 480 (2014) 58–78.
  88. G.A. McCarver, T. Rajeshkumar, K.D. Vogiatzis, Computational catalysis for metal-organic frameworks: an overview, Coord. Chem. Rev., 436 (2021) 213777, doi: 10.1016/j.ccr.2021.213777.
  89. C. Shao, F. Zhang, X. Li, J.H. Zhang, Y.S. Jiang, H.Y. Cheng, K.G. Zhu, Influence of Cr doping on the oxygen evolution potential of SnO2/Ti and Sb-SnO2/Ti electrodes, J. Electroanal. Chem., 832 (2019) 436–443.
  90. W. Fu, G.-J. Xia, Y. Zhang, J.H. Hu, Y.-G. Wang, J. Li, X.Y. Li, B. Li, Using general computational chemistry strategy to unravel the reactivity of emerging pollutants: an example of sulfonamide chlorination, Water Res., 202 (2021) 117391, doi: doi: 10.1016/j.watres.2021.117391.
  91. M. Behrens, F. Studt, I. Kasatkin, S. Kuehl, M. Haevecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.L. Kniep, The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts, Science, 336 (2012) 893–897.
  92. R.G. González-Huerta, G. Ramos-Sánchez, P.B. Balbuena, Oxygen evolution in co-doped RuO2 and IrO2: experimental and theoretical insights to diminish electrolysis over-potential, J. Power Sources, 268 (2014) 69–76.
  93. L.D. Chen, M. Urushihara, K. Chan, J.K. Norskov, Electric field effects in electrochemical CO2 reduction, ACS Catal., 6 (2016) 7133–7139.
  94. D.V. Vasilyev, P.J. Dyson, The role of organic promoters in the electroreduction of carbon dioxide, ACS Catal., 11 (2021) 1392–1405.
  95. C.C. Chang, M.S. Ku, Role of high-index facet Cu(711) surface in controlling the C2 selectivity for CO2 reduction reaction — a DFT study, J. Phys. Chem. C, 125 (2021) 10919–10925.
  96. W. Wang, X. Liu, J. Pérez-Ríos, Complex reaction network thermodynamic and kinetic autoconstruction based on Ab initio statistical mechanics: a case study of O2 activation on Ag4 clusters, J. Phys. Chem. A, 125 (2021) 5670–5680.
  97. S.G. Moore, D.R. Wheeler, Chemical potential perturbation: a method to predict chemical potentials in periodic molecular simulations, J. Chem. Phys., 134 (2011) 114514, doi: 10.1063/1.3561865.
  98. H. Lin, D.G. Truhlar, QM/MM: what have we learned, where are we, and where do we go from here?, Theor. Chem. Acc., 117 (2006) 185–199.
  99. K. Schwarz, R. Sundararaman, The electrochemical interface in first-principles calculations, Surf. Sci. Rep., 75 (2020) 100492, doi: 10.1016/j.surfrep.2020.100492.
  100. X. Shi, S. Back, T.M. Gill, S. Siahrostami, X.L. Zheng, Electrochemical synthesis of H2O2 by two-electron water oxidation reaction, Chem, 7 (2021) 38–63.