1. X. Zhang, L. Zhao, J. Wang, L. Chen, X. Yue, Residual Oil Distribution of Heterogeneous Reservoir at Different Water Drive Velocity, Proceedings of the International Field Exploration and Development Conference 2017, Springer, Singapore, 2019.
  2. D. Wijeratne, B.M. Halvorsen, Computational study of fingering phenomenon in heavy oil reservoir with water drive, Fuel, 158 (2015) 306–314.
  3. Z. Wang, Y. Xu, Y. Gan, X. Han, W. Liu, H. Xin, Micromechanism of partially hydrolyzed polyacrylamide molecule agglomeration morphology and its impact on the stability of crude oil−water interfacial film, J. Pet. Sci. Eng., 214 (2022) 110492, doi: 10.1016/j.petrol.2022.110492.
  4. D. Ramirez, C.D. Collins, Maximisation of oil recovery from an oil–water separator sludge: influence of type, concentration, and application ratio of surfactants, Waste Manage., 82 (2018) 100–110.
  5. H. Zhong, Y. He, E. Yang, Y. Bi, T. Yang, Modeling of microflow during viscoelastic polymer flooding in heterogenous reservoirs of Daqing Oilfield, J. Pet. Sci. Eng., 210 (2022) 110091, doi: 10.1016/j.petrol.2021.110091.
  6. Q. Gao, Y. Wang, Y. Jiang, Study on scaling formation characteristics and produced liquid properties in oil–wells of ASP Flooding, Adv. Mater. Res., 524 (2012) 1270–1278.
  7. Y.V. Savinykh, D.I. Chuykina, L.D. Stakhina, Impact of integrated technologies of enhanced oil recovery on the changes in the composition of heavy oil, J. Sib. Fed. Univ.: Chem., 13 (2020) 17–24.
  8. U.A. Aziz, N. Adnan, M.Z.R. Sohri, D.F. Mohshim, A.K. Idris, M.A. Azman, Characterization of anionic–nonionic surfactant mixtures for enhanced oil recovery, J. Solution Chem., 48 (2019) 1617–1637.
  9. Z.-H. Wang, X.-Y. Liu, H.-Q. Zhang, Y. Wang, Y.-F. Xu, B.-L. Peng, Y. Liu, Modeling of kinetic characteristics of alkaline-surfactant polymer-strengthened foams decay under ultrasonic standing wave, Pet. Sci., 19 (2022) 1825–1839.
  10. H. Liu, G. Jia, S. Chen, Y. Cai, Optimization of flow deflector quantities for gravity oil–water separator, Appl. Mech. Mater., 675 (2014) 685–688.
  11. H. Luo, J. Wen, C. Lv, Z. Wang, Modeling of viscosity of unstable crude oil–water mixture by characterization of energy consumption and crude oil physical properties, J. Pet. Sci. Eng., 212 (2022) 110222, doi: 10.1016/j.petrol.2022.110222.
  12. D.D. Fazullin, L.I. Fazullina, D.A. Yarovikova, G.V. Mavrin, I.A. Nasyrov, I.G. Shaikhiev, Demulsification and ultrafiltration of water-oil emulsions, Chem. Pet. Eng., 57 (2022) 783–791.
  13. D. Langevin, J.F. Argillier, Interfacial behavior of asphaltenes, Adv. Colloid Interface Sci., 233 (2016) 222–227.
  14. A.M. Sousa, M.J. Pereira, H.A. Matos, Oil-in-water and water-in-oil emulsions formation and demulsification, J. Pet. Sci. Eng., 210 (2022) 110041, doi: 10.1016/j.petrol.2021.110041.
  15. Y. Dhandhi, R.K. Chaudhari, T.K. Naiya, Development in separation of oilfield emulsion toward green technology – a comprehensive review, Sep. Sci. Technol., 57 (2021) 1642–1668.
  16. H. Pramadika, A.R. Wastu, B. Satiyawira, C. Rosyidan, M. Maulani, A. Prima, L. Samura, Z. Darajat, Demulsification optimization process on separation of water with heavy oil, AIP Conf. Proc., 2363 (2021) 020029, doi: 10.1063/5.0061527.
  17. H. Gong, W. Li, X. Zhang, Y. Peng, B. Yu, Y. Mou, Simulation of the coalescence and breakup of water-in-oil emulsion in a separation device strengthened by coupling electric and swirling centrifugal fields, Sep. Purif. Technol., 238 (2020) 116397, doi: 10.1016/j.seppur.2019.116397.
  18. N.H. Abdurahman, R.B. Yunus, N.H. Azhari, N. Said, Z. Hassan, The potential of microwave heating in separating water-in-oil (w/o) emulsions, Energy Procedia, 138 (2017) 1023–1028.
  19. S.A. Solovyev, O.V. Solovyeva, R.R. Yafizov, S.I. Ponikarov, I.Y. Portnov, Study of the influence of coalescence baffle inclination angle on the intensity of water-oil emulsion separation in a separator section, Chem. Pet. Eng., 57 (2021) 19–24.
  20. C. Atehortúa, N. Pérez, M. Andrade, L. Pereira, J.C. Adamowski, Water-in-oil emulsions separation using an ultrasonic standing wave coalescence chamber, Ultrason. Sonochem., 57 (2019) 57–61.
  21. X. Li, L. Han, Z. Huang, Z. Li, F. Li, H. Duan, L. Huang, Q. Jia, H. Zhang, S. Zhang, A robust air superhydrophilic/superoleophobic diatomite porous ceramic for high-performance continuous separation of oil-in-water emulsion, Chemosphere, 303 (2022) 134756, doi: 10.1016/j.chemosphere.2022.134756.
  22. F. Li, X. Wan, J. Hong, X. Guo, M. Sun, H. Lv, H. Wang, J. Mi, J. Cheng, X. Pan, M. Xu, Z. Wang, A self-powered and efficient triboelectric dehydrator for separating water-in-oil emulsions with ultrahigh moisture content, Adv. Mater. Technol., 7 (2022) 2200198, doi: 10.1002/admt.202200198.
  23. B. Ren, Y. Kang, Aggregation of oil droplets and demulsification performance of oil-in-water emulsion in bidirectional pulsed electric field, Sep. Purif. Technol., 211 (2019) 958–965.
  24. F. Esmaelion, H. Tavanai, A.A.M. Beigi, M. Bazarganipour, Application of fibrous structures in separation of water and oil emulsions: a review, J. Environ. Chem. Eng., 10 (2022) 107999, doi: 10.1016/j.jece.2022.107999.
  25. B. Xu, Fast and energy-efficient demulsification for crude oil emulsions using pulsed electric field, Int. J. Electrochem. Sci., 12 (2017) 9242–9249.
  26. K. Guo, Y. Lv, L. He, X. Luo, D. Yang, Separation characteristics of w/o emulsion under the coupling of electric field and magnetic field, Energy Fuel, 33 (2019) 2565–2574.
  27. S. Mhatre, S. Simon, J. Sjöblom, Z. Xu, Demulsifier assisted film thinning and coalescence in crude oil emulsions under dc electric fields, Chem. Eng. Res. Des., 134 (2018) 117–129.
  28. M. Mohammadi, S. Shahhosseini, M. Bayat, Direct numerical simulation of water droplet coalescence in the oil, Int. J. Heat Fluid Flow, 36 (2012) 58–71.
  29. F.M. Fowkes, F.W. Anderson, J.E. Berger, Bimetallic coalescers: electrophoretic coalescence of emulsions in beds of mixedmetal granules, Environ. Sci. Technol., 4 (2002) 510–514.
  30. Y. Peng, L. Tao, H. Gong, X. Zhang, Review of the dynamics of coalescence and demulsification by high-voltage pulsed electric fields, Int. J. Chem. Eng., 4 (2016) 1–8.
  31. K. Adamiak, J.M. Floryan, Dynamics of Water Droplet Distortion and Break-Up in a Uniform Electric Field, 2010 IEEE Industry Applications Society Annual Meeting, IEEE, Houston, TX, USA, 2010, pp. 2374–2383.
  32. S.H. Mousavi, M. Ghadiri, M. Buckley, Electro-coalescence of water drops in oils under pulsatile electric fields, Chem. Eng. Sci., 120 (2014) 130–142.
  33. S. Ervik, S.M. Helles, S.T. Munkejord, B. Müller, Experimental and Computational Studies of Water Drops Falling Through Model Oil with Surfactant and Subjected to an Electric Field, 2014 IEEE 18th International Conference on Dielectric Liquids (ICDL), IEEE, Bled, Slovenia, 2014.
  34. Z. Wang, X. Le, Y. Feng, Z. Hu, Dehydration of aging oil by an electrochemical method, Chem. Technol. Fuels Oils, 50 (2014) 262–268.
  35. Y. Song, Y. Xu, Z. Wang, An experimental study on efficient demulsification for produced emulsion in alkaline/surfactant/polymer flooding, J. Energy Resour. Technol., 144 (2022) 093001, doi: 10.1115/1.4053136.
  36. N. Koutsourakis, J.G. Bartzisa, N.C. Markatos, Evaluation of Reynolds stress, k–ε and RNG k–ε turbulence models in street canyon flows using various experimental datasets, Environ. Fluid Mech., 12 (2012) 379–403.
  37. Y. Mori, M. Sakai, Development of a robust Eulerian–Lagrangian model for the simulation of an industrial solid–fluid system, Chem. Eng. J., 406 (2021) 126841, doi: 10.1016/j.cej.2020.126841.
  38. R. Keser, V. Vukčević, M. Battistoni, H.G. Im, H. Jasak, Implicitly coupled phase fraction equations for the Eulerian multi-fluid model, Comput. Fluids, 192 (2019) 104277, doi: 10.1016/j.compfluid.2019.104277.
  39. D.C. Wilcox, Turbulence Modeling for CFD, DCW Industries, 2006.
  40. T.K. Bandyopadhyay, CFD Analysis for Non-Newtonian and Gas-Non-Newtonian Liquid Flow, LAP LAMBERT Academic Publishing, Saarbrucken, 2013.