References

  1. I. Maamoun, O. Eljamal, O. Falyouna, R. Eljamal, Y. Sugihara, Multi-objective optimization of permeable reactive barrier design for Cr(VI) removal from groundwater, Ecotoxicol. Environ. Saf., 200 (2020) 110773, doi: 10.1016/j.ecoenv.2020.110773.
  2. H. Tian-Pei, X. Ying, P. Jie-Ru, C. Zhi, L.I. Li-Fen, X.U. Lei, Z. Ling-Ling, G. Xiong, Aerobic Cr(VI) reduction by an indigenous soil isolate Bacillus thuringiensis BRC-ZYR2, Pedosphere, 24 (2014) 652–661.
  3. F. Fu, J. Ma, L. Xie, B. Tang, W. Han, S. Lin, Chromium removal using resin supported nanoscale zero-valent iron, J. Environ. Manage., 128 (2013) 822–827.
  4. E. Brasili, I. Bavasso, V. Petruccelli, G. Vilardi, A. Valletta, C. Dal Bosco, A. Gentili, G. Pasqua, L. Di Palma, Remediation of hexavalent chromium contaminated water through zerovalent iron nanoparticles and effects on tomato plant growth performance, Sci. Rep.-UK, 10 (2020) 1920, doi: 10.1038/s41598-020-58639-7.
  5. G. Vilardi, J. Rodriguez-Rodriguez, J. Miguel Ochando-Pulido, L. Di Palma, N. Verdone, Fixed-bed reactor scale-up and modelling for Cr(VI) removal using nano iron-based coated biomass as packing material, Chem. Eng. J., 361 (2019) 990–998.
  6. S. Lou, S. Liu, C. Dai, A. Tao, B. Tan, G. Ma, R. Chalov, S. Chalov, Heavy metal distribution and groundwater quality assessment for a coastal area on a Chinese Island, Pol. J. Environ. Stud., 26 (2017) 733–745.
  7. C. Qian, W. Zhang, Progress of application of PRB reaction medium materials in remediation of contaminated groundwater, Environ. Eng., 36 (2018) 1–5, 11.
  8. M.M. Scherer, S. Richter, R.L. Valentine, P.J.J. Alvarez, Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean-up, Crit. Rev. Microbiol., 26 (2008) 221–264.
  9. R. Thiruvenkatachari, S. Vigneswaran, R. Naidu, Permeable reactive barrier for groundwater remediation, J. Ind. Eng. Chem., 14 (2008) 145–156.
  10. W.K. Walter, U.S. EPA Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers, EPA, Washington, 1999.
  11. F. Obiri-Nyarko, S.J. Grajales-Mesa, G. Malina, An overview of permeable reactive barriers for in situ sustainable groundwater remediation, Chemosphere, 111 (2014) 243–259.
  12. H. Dong, L. Li, Y. Lu, Y. Cheng, Y. Wang, Q. Ning, B. Wang, L. Zhang, G. Zeng, Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: a review, Environ. Int., 124 (2019) 265–277.
  13. R.W. Gillham, S.F. Ohannesin, enhanced degradation of halogenated aliphatics by zero-valent iron, Groundwater, 32 (1994) 958–967.
  14. J. Klausen, P.J. Vikesland, T. Kohn, D.R. Burris, W.P. Ball, A.L. Roberts, Longevity of granular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compounds, Environ. Sci. Technol., 37 (2003) 1208–1218.
  15. P. Lacina, V. Dvorak, E. Vodickova, P. Barson, J. Kalivoda, S. Goold, The application of nano-sized zero-valent iron for in situ remediation of chlorinated ethylenes in groundwater: a field case study, Water Environ. Res., 87 (2015) 326–333.
  16. R.M. Powell, R.W. Puls, S.K. Hightower, D.A. Sabatini, Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation, Environ. Sci. Technol., 29 (1995) 1913–1922.
  17. C. Kantar, C. Ari, S. Keskin, Z.G. Dogaroglu, A. Karadeniz, A. Alten, Cr(VI) removal from aqueous systems using pyrite as the reducing agent: batch, spectroscopic and column experiments, J. Contam. Hydrol., 174 (2015) 28–38.
  18. R.T. Wilkin, R.W. Puls, G.W. Sewell, Long-term performance of permeable reactive barriers using zero-valent iron: geochemical and microbiological effects, Groundwater, 41 (2003) 493–503.
  19. Z. Wang, G. Chen, X. Wang, S. Li, Y. Liu, G. Yang, Removal of hexavalent chromium by bentonite supported organosolv lignin-stabilized zero-valent iron nanoparticles from wastewater, J. Cleaner Prod., 267 (2020) 122009, doi: 10.1016/j.jclepro.2020.122009.
  20. M. Cai, J. Zeng, Y. Chen, P. He, F. Chen, X. Wang, J. Liang, C. Gu, D. Huang, K. Zhang, M. Gan, J. Zhu, An efficient, economical, and easy mass production biochar supported zero-valent iron composite derived from direct-reduction natural goethite for Cu(II) and Cr(VI) remove, Chemosphere (Oxford), 285 (2021) 131539, doi: 10.1016/j.chemosphere.2021.131539.
  21. F. Zhu, X. Tan, W. Zhao, L. Feng, S. He, L. Wei, L. Yang, K. Wang, Q. Zhao, Efficiency assessment of ZVI-based media as fillers in permeable reactive barrier for multiple heavy metalcontaminated groundwater remediation, J. Hazard. Mater., 424 (2022) 127605, doi: 10.1016/j.jhazmat.2021.127605.
  22. C. Wang, Z. Xu, G. Ding, X. Wang, M. Zhao, S.S.H. Ho, Y. Li, Comprehensive study on the removal of chromate from aqueous solution by synthesized kaolin supported nanoscale zero-valent iron, Desal. Water Treat., 57 (2015) 5065–5078.
  23. S. Peng, H. Meng, Y. Ouyang, J. Chang, Nanoporous magnetic cellulose– chitosan composite microspheres: preparation, characterization, and application for Cu(II) adsorption, Ind. Eng. Chem. Res., 53 (2014) 2106–2113.
  24. E.I. Rabea, M.E.T. Badawy, C.V. Stevens, G. Smagghe, W. Steurbaut, Chitosan as antimicrobial agent: applications and mode of action, Biomacromolecules, 4 (2003) 1457–1465.
  25. R. Zhao, X. Zheng, J. Ren, X. Tang, Y. Long, H. Zheng, Research progress on the modification of chitosan by cross-linking and grafting, Polym. Bull., (2019) 43–50.
  26. H.M. Ibrahim, M. Mostafa, N.G. Kandile, Potential use of N-carboxyethylchitosan in biomedical applications: preparation, characterization, biological properties, Int. J. Biol. Macromol., 149 (2020) 664–671.
  27. J. Dai, H. Yan, H. Yang, R. Cheng, Simple method for preparation of chitosan/poly(acrylic acid) blending hydrogel beads and adsorption of copper(II) from aqueous solutions, Chem. Eng. J., 165 (2010) 240–249.
  28. Q. Song, C. Wang, Z. Zhang, J. Gao, Adsorption of Cu(II) and Ni(II) using a novel xanthated carboxymethyl chitosan, Sep. Sci. Technol., 49 (2014) 1235–1243.
  29. X. Wang, Y. Zheng, A. Wang, Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites, J. Hazard. Mater., 168 (2009) 970–977.
  30. Y. Lin, Y. Hong, Q. Song, Z. Zhang, J. Gao, T. Tao, Highly efficient removal of copper ions from water using poly(acrylic acid)-grafted chitosan adsorbent, Colloid Polym. Sci., 295 (2017) 627–635.
  31. Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70 (1998) 115–124.
  32. H. Ge, H. Chen, S. Huang, Microwave preparation and properties of O-crosslinked maleic acyl chitosan adsorbent for Pb2+ and Cu2+, J. Appl. Polym. Sci., 125 (2012) 2716–2723.
  33. G. Vilardi, Mathematical modelling of simultaneous nitrate and dissolved oxygen reduction by Cu-nZVI using a bi-component shrinking core model, Powder Technol., 343 (2019) 613–618.
  34. V.V. Thekkae Padil, J. Filip, K.I. Suresh, S. Wacławek, M. Černík, Electrospun membrane composed of poly[acrylonitrile-co- (methyl acrylate)-co-(itaconic acid)] terpolymer and ZVI nanoparticles and its application for the removal of arsenic from water, RSC Adv., 6 (2016) 110288–110300.
  35. P.B. Vilela, C.A. Matias, A. Dalalibera, V.A. Becegato, A.T. Paulino, Polyacrylic acid-based and chitosan-based hydrogels for adsorption of cadmium: equilibrium isotherm, kinetic and thermodynamic studies, J. Environ. Chem. Eng., 7 (2019) 103327.
  36. N.A. Mohamed, N.A. Abd El-Ghany, Pyromellitimide benzoyl thiourea cross-linked carboxymethyl chitosan hydrogels as antimicrobial agents, Int. J. Polym. Mater. Polym. Biomater., 66 (2017) 861–870.
  37. T. Liu, B. Li, J. Zhang, L. Zhu, J. Chen, Kinetic studies on the pyrolysis of chitosan and chitin, Food Ferment. Ind., 36 (2010) 32–36.
  38. S. El-Houte, M. El-Sayed Ali, O.T. Sørensen, Dehydration of CuSO4·5H2O studied by conventional and advanced thermal analysis techniques, Thermochim. Acta, 138 (1989) 107–114.
  39. T. Liu, Kinetic studies on the pyrolysis of a water-soluble chitosan, Univ. Nat. Sci., 46 (2012) 65–70.
  40. H.F.G. Barbosa, D.S. Francisco, A.P.G. Ferreira, É.T.G. Cavalheiro, A new look towards the thermal decomposition of chitins and chitosans with different degrees of deacetylation by coupled TG-FTIR, Carbohydr. Polym., 225 (2019) 115232, doi: 10.1016/j.carbpol.2019.115232.
  41. C. Xu, W. Yang, W. Liu, H. Sun, C. Jiao, A. Lin, Performance and mechanism of Cr(VI) removal by zero-valent iron loaded onto expanded graphite, J. Environ. Sci.-China, 67 (2018) 14–22.
  42. Y. Gong, L. Gai, J. Tang, J. Fu, Q. Wang, E.Y. Zeng, Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles, Sci. Total Environ., 595 (2017) 743–751.
  43. A.J. Varma, S.V. Deshpande, J.F. Kennedy, Metal complexation by chitosan and its derivatives: a review, Carbohydr. Polym., 55 (2004) 77–93.
  44. G. Vilardi, B. De Caprariis, M. Stoller, L. Di Palma, N. Verdone, Intensified water denitrification by means of a spinning disk reactor and stirred tank in series: kinetic modelling and computational fluid dynamics, J. Water Process Eng., 34 (2020) 101147, doi: 10.1016/j.jwpe.2020.101147.
  45. T. Yoadsomsuay, N. Grisdanurak, C.H. Liao, Influence of chitosan on modified nanoscale zero-valent iron for arsenate removal, Desal. Water Treat., 57 (2016) 17861–17869.
  46. H. Chen, J. Dou, H. Xu, The effect of low-molecular-weight organic-acids (LMWOAs) on treatment of chromiumcontaminated soils by compost-phytoremediation: kinetics of the chromium release and fractionation, J. Environ. Sci.-China, 70 (2018) 45–53.
  47. Z. Yu, L. Hu, I.M.C. Lo, Transport of the arsenic(As)-loaded nano zero-valent iron in groundwater-saturated sand columns: roles of surface modification and As loading, Chemosphere, 216 (2019) 428–436.
  48. Y. Wen, Z. Tang, Y. Chen, Y. Gu, Adsorption of Cr(VI) from aqueous solutions using chitosan-coated fly ash composite as biosorbent, Chem. Eng. J., 175 (2011) 110–116.
  49. T. Liu, I.M.C. Lo, Influences of humic acid on Cr(VI) removal by zero-valent iron from groundwater with various constituents: implication for long-term PRB performance, Water, Air, Soil Pollut., 216 (2011) 473–483.
  50. L. Yan, M. Liu, X. Hu, Removal of Cr(VI) in soil by chitosan stabilized nanoscale zero iron, Nat. Sci. Ed., 22 (2016) 203–210.
  51. T. Mpouras, A. Polydera, D. Dermatas, N. Verdone, G. Vilardi, Multi wall carbon nanotubes application for treatment of Cr(VI)-contaminated groundwater; modeling of batch and column experiments, Chemosphere, 269 (2021) 128749, doi: 10.1016/j.chemosphere.2020.128749.
  52. H. Dong, J. Deng, Y. Xie, C. Zhang, Z. Jiang, Y. Cheng, K. Hou, G. Zeng, Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution, J. Hazard. Mater., 332 (2017) 79–86.
  53. J. Liu, T. Mwamulima, Y. Wang, Y. Fang, S. Song, C. Peng, Removal of Pb(II) and Cr(VI) from aqueous solutions using the fly ash-based adsorbent material-supported zero-valent iron, J. Mol. Liq., 243 (2017) 205–211.
  54. L. Wu, L. Liao, G. Lv, F. Qin, Y. He, X. Wang, Micro-electrolysis of Cr(VI) in the nanoscale zero-valent iron loaded activated carbon, J. Hazard. Mater., 254–255 (2013) 277–283.
  55. L. Liu, L. Liang, Y. Shi, X. Wang, K. Feng, S. Wang, Sulfidation enhanced Cr(VI) reduction by zero-valent iron under different environmental conditions: a mechanistic study, J. Agro-Environ. Sci., 40 (2021) 1079–1087.
  56. M. Hou, H. Wan, T. Liu, Y. Fan, X. Liu, X. Wang, The effect of different divalent cations on the reduction of hexavalent chromium by zero-valent iron, Appl. Catal., B, 84 (2008) 170–175.
  57. H. Zhang, R. Xiao, R. Li, A. Ali, A. Chen, Z. Zhang, Enhanced aqueous Cr(VI) removal using chitosan-modified magnetic biochars derived from bamboo residues, Chemosphere, 261 (2020) 127694, doi: 10.1016/j.chemosphere.2020.127694.