References

  1. R. Wyman, G. Yao, Water, Food, and the Environment, J.M.H. Selendy, Ed., Water and Sanitation – Related Diseases Water and the Changing Environment, 2nd ed., John Wiley & Sons Inc., UK, 2019, pp. 39–51.
  2. H. Tanaka, Experimental study of a basin type solar still with internal and external reflectors in winter, Desalination, 249 (2009) 130–134.
  3. G.N. Tiwari, K. Mukherjee, K.R. Ashok, Y.P. Yadav, Comparison of various designs of solar stills, Desalination, 60 (1986) 191–202.
  4. A. Kumar, J.D. Anand, G.N. Tiwari, Transient analysis of a double slope-double basin solar distiller, Energy Convers. Manage., 31 (1991) 129–139.
  5. H. Al-Hinai, M.S. Al-Nassri, B.A. Jubran, Parametric investigation of a double-effect solar still in comparison with a single-effect solar still, Desalination, 150 (2002) 75–83.
  6. A.M. Tayeb, Performance study of some designs of solar still, Energy Convers. Manage., 33 (1992) 889–898.
  7. Z.M. Omara, M.H. Hamed, A.E. Kabeel, Performance of finned and corrugated absorbers solar stills under Egyptian conditions, Desalination, 277 (2011) 281–287.
  8. P.K. Srivastava, S.K. Agrawal, Experimental and theoretical analysis of single sloped basin type solar still consisting of multiple low thermal inertia floating porous absorbers, Desalination, 311 (2013) 198–205.
  9. B.A. Abu-Hijleh, H.M. Rababa’h, Experimental study of a solar still with sponge cubes in basin, Energy Convers. Manage., 44 (2003) 1411–1418.
  10. P. Dumka, R. Chauhan, D.R. Mishra, Experimental and theoretical evaluation of a conventional solar still augmented with jute covered plastic balls, J. Energy Storage, 32 (2020) 101874, doi: 10.1016/j.est.2020.101874.
  11. Z.S. Abdel-Rehima, A. Lasheen, Improving the performance of solar desalination systems, Renewable Energy, 30 (2005) 1955–1971.
  12. F.A. Essa, A.S. Abdullah, Z.M. Omara, Rotating discs solar still: new mechanism of desalination, J. Cleaner Prod., 275 (2020) 123200, doi: 10.1016/j.jclepro.2020.123200.
  13. Y. Taamneh, M.M. Taamneh, Performance of pyramid-shaped solar still: experimental study, Desalination, 291 (2012) 65–68.
  14. M. Sakthivel, S. Shanmugasundaram, Effect of energy storage medium (black granite gravel) on the performance of a solar still, Int. J. Energy Res., 32 (2008) 68–82.
  15. D. Mevada, H. Panchal, M. Ahmadein, M.E. Zayed, N.A. Alsaleh, J. Djuansjah, E.B. Moustafa, A.H. Elsheikh, K.K. Sadasivuni, Investigation and performance analysis of solar still with energy storage materials:
    an energy-exergy efficiency analysis, Case Stud. Therm. Eng., 29 (2022) 101687, doi: 10.1016/j.csite.2021.101687.
  16. A.A. El-Sebaii, A.A. Al-Ghamdi, F.S. Al-Hazmi, A.S. Faidah, Thermal performance of a single basin solar still with PCM as a storage medium, Appl. Energy, 86 (2009) 1187–1195.
  17. V.P. Katekar, S.S. Deshmukh, A review of the use of phase change materials on performance of solar stills, J. Energy Storage, 30 (2020) 101398, doi: 10.1016/j.est.2020.101398.
  18. T.F. Farshchi, S.A. Zolfaghari, Experimental study of an integrated basin solar still with a sandy heat reservoir, Desalination, 253 (2010) 195–199.
  19. T. Arunkumar, R. Jayaprakash, D. Denkenberger, A. Amimul, M.S. Okundamiya, K. Sanjay, H. Tanaka, H.S. Aybar, An experimental study on a hemispherical solar still, Desalination, 286 (2012) 342–348.
  20. V.S.V. Bapeshwararao, U. Singh, G.N. Tiwari, Transient analysis of double basin solar still, Energy Convers. Manage., 23 (1983) 83–90.
  21. P.U. Suneesh, R. Jayaprakash, T. Arunkumar, D. Denkenberger, Effect of air flow on V type solar still with cotton gauze cooling, Desalination, 337 (2014) 1–5.
  22. H.M. Ahmed, K.A. Alfaylakawi, Productivity enhancement of conventional solar stills using water sprinklers and cooling fan, J. Adv. Sci. Eng. Res., 2 (2012) 168–177.
  23. A.Z. Al-Garni, Productivity enhancement of single slope solar still using immersion-type water heater and external cooling fan during summer, Desal. Water Treat., 52 (2014) 6295–6303.
  24. A.Z. Al-Garni, Productivity enhancement of solar still using water heater and cooling fan, J. Sol. Energy Eng., 134 (2012) 031006, doi: 10.1115/1.4005760.
  25. A. E1-Bahi, D. Inan, A solar still with minimum inclination, coupled to an outside condenser, Desalination, 123 (1999) 79–83.
  26. H.E.S. Fath, H.M. Hosny, Thermal performance of a singlesloped basin still with an inherent built-in additional condenser, Desalination, 142 (2002) 19–27.
  27. H.M. Ahmed, Seasonal performance evaluation of solar stills connected to passive external condensers, Sci. Res. Essays, 7 (2012) 1444–1460.
  28. A.A.F. Al-Hamadani, S.K. Shukla, Performance of single slope solar still with solar protected condenser, Distributed Gener. Altern. Energy J., 28 (2013) 6–28.
  29. H.E.S. Fath, High performance of a simple design, two effect solar distillation unit, Desalination, 107 (1996) 223–233.
  30. K.V. Modi, S.R. Maurya, J.H. Parmar, A.B. Kalsariya, P.B. Panasara, An experimental investigation of the effectiveness of partially and fully submerged metal hollow-fins and jute cloth wick-fins on the performance of a dual-basin single-slope solar still, Cleaner Eng. Technol., 6 (2022) 100392, doi: 10.1016/j.clet.2021.100392.
  31. D. Shukla, K. Modi, Hybrid solar still as a co-generative system and desalination system – an experimental performance evaluation, Cleaner Eng. Technol., 2 (2021) 100063, doi: 10.1016/j.clet.2021.100063.
  32. M. Patel, C. Patel, H. Panchal, Performance analysis of conventional triple basin solar still with evacuated heat pipes, corrugated sheets and storage materials, Groundwater Sustainable Dev., 11 (2020) 100387, doi: 10.1016/j.gsd.2020.100387.
  33. J. Holman, Experimental Methods for Engineers, 8th ed., McGraw-Hill Companies, New York, 2012, pp. 60–68.