References

  1. V. Gupta, P. Carrott, R. Singh, M. Chaudhary, S. Kushwaha, Cellulose: a review as natural, modified and activated carbon adsorbent, Bioresour. Technol., 216 (2016) 1066–1076.
  2. M.T. Holtzapple, Hemicelluloses, B. Caballero, Ed., Encyclopedia of Food Sciences and Nutrition, Academic Press, USA, 2003, pp. 3060–3071. doi: 10.1016/ B0-12-227055-X/00589-7
  3. A. Jamshaid, A. Hamid, N. Muhammad, A. Naseer, M. Ghauri, J. Iqbal, S. Rafiq, N.S. Shah, Cellulose‐based materials for the removal of heavy metals from wastewater–an overview, ChemBioEng Rev., 4 (2017) 240–256.
  4. N.A. Khan, S.I. Ali, S. Ayub, Effect of pH on the removal of chromium(Cr)(VI) by sugar cane bagasse, Sultan Qaboos Univ. J. Sci., 6 (2001) 13–19.
  5. W.W. Ngah, M.M. Hanafiah, Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review, Bioresour. Technol., 99 (2008) 3935–3948.
  6. D. Sharma, C. Forster, A preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents, Bioresour. Technol., 47 (1994) 257–264.
  7. I. Rahman, J. Ismail, H. Osman, Effect of nitric acid digestion on organic materials and silica in rice husk, J. Mater. Chem., 7 (1997) 1505–1509.
  8. V. Gupta, P. Carrott, R. Singh, M. Chaudhary, S. Kushwaha, Cellulose: a review as natural, modified and activated carbon adsorbent, Bioresour. Technol., 216 (2016) 1066–1076.
  9. M.T. Holtzapple, Hemicelluloses, B. Caballero, Ed., Encyclopedia of Food Sciences and Nutrition, Academic Press, USA, 2003, pp. 3060–3071. doi: 10.1016/ B0-12-227055-X/00589-7
  10. A. Jamshaid, A. Hamid, N. Muhammad, A. Naseer, M. Ghauri, J. Iqbal, S. Rafiq, N.S. Shah, Cellulose-based materials for the removal of heavy metals from wastewater – an overview, ChemBioEng Rev., 4 (2017) 240–256.
  11. N.A. Khan, S.I. Ali, S. Ayub, Effect of pH on the removal of chromium(Cr)(VI) by sugar cane bagasse, Sultan Qaboos Univ. J. Sci., 6 (2001) 13–19.
  12. W.W. Ngah, M.M. Hanafiah, Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review, Bioresour. Technol., 99 (2008) 3935–3948.
  13. D. Sharma, C. Forster, A preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents, Bioresour. Technol., 47 (1994) 257–264.
  14. I. Rahman, J. Ismail, H. Osman, Effect of nitric acid digestion on organic materials and silica in rice husk, J. Mater. Chem., 7 (1997) 1505–1509.
  15. T.G. Chuah, A. Jumasiah, I. Azni, S. Katayon, S.T. Choong, Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview, Desalination, 175 (2005) 305–316.
  16. U. Kumar, M. Bandyopadhyay, Fixed bed column study for Cd(II) removal from wastewater using treated rice husk, J. Hazard. Mater., 129 (2006) 253–259.
  17. S. Mohan, G. Sreelakshmi, Fixed bed column study for heavy metal removal using phosphate treated rice husk, J. Hazard. Mater., 153 (2008) 75–82.
  18. R. Verma, P.K. Maji, S. Sarkar, Comprehensive investigation of the mechanism for Cr(VI) removal from contaminated water using coconut husk as a biosorbent, J. Cleaner Prod., 314 (2021) 128117, doi: 10.1016/j.jclepro.2021.128117.
  19. L. Wang, J. Li, Adsorption of CI Reactive Red 228 dye from aqueous solution by modified cellulose from flax shive: kinetics, equilibrium, and thermodynamics, Ind. Crops Prod., 42 (2013) 153–158.
  20. Y. Zhou, Y. Min, H. Qiao, Q. Huang, E. Wang, T. Ma, Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride, Int. J. Biol. Macromol., 74 (2015) 271–277.
  21. M.A. Hubbe, K.R. Beck, W.G. O’Neal, Y.C. Sharma, Cellulosic substrates for removal of pollutants from aqueous systems: a review. 2. Dyes, BioRes., 7 (2012) 2592–2687.
  22. M.A. Hubbe, S.H. Hasan, J.J. Ducoste, Cellulosic substrates for removal of pollutants from aqueous systems: a review. 1. Metals, BioRes., 6 (2011) 2161–2287.
  23. D.K. Jha, P.P. Dhekne, A.W. Patwardhan, Characterization and evaluation of tea bag papers, J. Food Sci. Technol., 57 (2020) 3060–3070.
  24. Tea Bag. https://en.wikipedia.org/wiki/Tea_bag
  25. J.-L. Gong, B. Wang, G.-M. Zeng, C.-P. Yang, C.-G. Niu, Q.-Y. Niu, W.-J. Zhou, Y. Liang, Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent, J. Hazard. Mater., 164 (2009) 1517–1522.
  26. T. Padmesh, K. Vijayaraghavan, G. Sekaran, M. Velan, Biosorption of Acid Blue 15 using fresh water macroalga Azolla filiculoides: batch and column studies, Dyes Pigm., 71 (2006) 77–82.
  27. V.K. Gupta, A. Mittal, R. Jain, M. Mathur, S. Sikarwar, Adsorption of Safranin-T from wastewater using waste materials activated carbon and activated rice husks, J. Colloid Interface Sci., 303 (2006) 80–86.
  28. K.V. Kumar, Pseudo-second-order models for the adsorption of safranin onto activated carbon: comparison of linear and non-linear regression methods, J. Hazard. Mater., 142 (2007) 564–567.
  29. M. Ghaedi, S. Haghdoust, S.N. Kokhdan, A. Mihandoost, R. Sahraie, A. Daneshfar, Comparison of activated carbon, multiwalled carbon nanotubes, and cadmium hydroxide nanowire loaded on activated carbon as adsorbents for kinetic and equilibrium study of removal of Safranine O, Spectrosc. Lett., 45 (2012) 500–510.
  30. T. Madrakian, A. Afkhami, M. Ahmadi, H. Bagheri, Removal of some cationic dyes from aqueous solutions using magneticmodified multi-walled carbon nanotubes, J. Hazard. Mater., 196 (2011) 109–114.
  31. N.K. Amin, Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics, J. Hazard. Mater., 165 (2009) 52–62.
  32. S. Preethi, A. Sivasamy, S. Sivanesan, V. Ramamurthi, G. Swaminathan, Removal of safranin basic dye from aqueous solutions by adsorption onto corncob activated carbon, Ind. Eng. Chem. Res., 45 (2006) 7627–7632.
  33. S. Chowdhury, R. Mishra, P. Kushwaha, P. Saha, Removal of safranin from aqueous solutions by NaOH‐treated rice husk: thermodynamics, kinetics and isosteric heat of adsorption, Asia-Pac. J. Chem. Eng., 7 (2012) 236–249.
  34. M.R. Malekbala, S.M. Soltani, S.K. Yazdi, S. Hosseini, Equilibrium and kinetic studies of safranine adsorption on alkali-treated mango seed integuments, Int. J. Chem. Eng. Appl., 3 (2012) 160–166.
  35. P. Beigzadeh, F. Moeinpour, Fast and efficient removal of silver(I) from aqueous solutions using Aloe vera shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles, Trans. Nonferrous Met. Soc. China, 26 (2016) 2238–2246.
  36. H.M. Zalloum, Z. Al-Qodah, M.S. Mubarak, Copper adsorption on chitosan-derived Schiff bases, J. Macromol. Sci. Part A Pure Appl. Chem., 46 (2008) 46–57.
  37. F. Omidvar-Hosseini, F. Moeinpour, Removal of Pb(II) from aqueous solutions using Acacia nilotica seed shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles, J. Water Reuse Desal., 6 (2016) 562–573.
  38. M. Hosseini, S.F. Mertens, M. Ghorbani, M.R. Arshadi, Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media, Mater. Chem. Phys., 78 (2003) 800–808.
  39. J.C. Igwe, A. Abia, Adsorption isotherm studies of Cd(II), Pb(II) and Zn(II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob, Eclética Química, 32 (2007) 33–42.
  40. Y.-S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70 (1998) 115–124.
  41. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 38 (1988) 3098–3100.
  42. A.D. Becke, A new mixing of Hartree–Fock and local densityfunctional theories, J. Chem. Phys., 98 (1993) 1372–1377.
  43. M. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT, 2009.
  44. R. Dennington, T. Keith, J. Millam, GaussView, Version 5, Semichem Inc., Shawnee Mission, KS, 2009.
  45. S.R. Khudhaier, A.A. Awad, D.T. Al-Heetimi, A.J.M. Al-Karawib, E.M. Al-Kinani, A.-A.B. OmarAli, Z.H.J. Al-Qaisi, Q.Z. Khalaf, Synthesis of chitosan–iron keplerate composite as an adsorbent for removal of toxic ions from water, Desal. Water Treat., 157 (2019) 165–176.
  46. M. Al-Ghouti, M. Khraisheh, S. Allen, M. Ahmad, The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth, J. Environ. Manage., 69 (2003) 229–238.
  47. T. Pelden, C. Thammaknet, P. Thavarungkul, P. Kanatharana, Tea bag filter paper as a novel protective membrane for micro-solid phase extraction of butachlor in aqueous samples, J. Environ. Sci. Health., Part B, 49 (2014) 480–490.
  48. W.W. Ngah, A. Kamari, Y. Koay, Equilibrium and kinetics studies of adsorption of copper(II) on chitosan and chitosan/PVA beads, Int. J. Biol. Macromol., 34 (2004) 155–161.
  49. K.C. Justi, M.C. Laranjeira, A. Neves, A.S. Mangrich, V.T. Fávere, Chitosan functionalized with
    2[-bis-(pyridylmethyl) aminomethyl]4-methyl-6-formyl-phenol: equilibrium and kinetics of copper(II) adsorption, Polymer, 45 (2004) 6285–6290.
  50. Ş.S. Bayazit, Investigation of Safranin-O adsorption on superparamagnetic iron oxide nanoparticles (SPION) and multi-wall carbon nanotube/SPION composites, Desal. Water Treat., 52 (2014) 6966–6975.
  51. I. Ghosh, S. Kar, T. Chatterjee, N. Bar, S.K. Das, Adsorptive removal of Safranin-O dye from aqueous medium using coconut coir and its acid-treated forms: adsorption study, scale-up design, MPR and GA-ANN modeling, Sustainable Chem. Pharm., 19 (2021) 100374, doi: 10.1016/j.scp.2021.100374.
  52. F.S. Teodoro, S.N. do Carmo Ramos, M.M.C. Elias, A.B. Mageste, G.M.D. Ferreira, L.H.M. da Silva, L.F. Gil, L.V.A. Gurgel, Synthesis and application of a new carboxylated cellulose derivative. Part I: removal of Co2+, Cu2+ and Ni2+ from monocomponent spiked aqueous solution, J. Colloid Interface Sci., 483 (2016) 185–200.
  53. F.S. Teodoro, O.F.H. Adarme, L.F. Gil, L.V.A. Gurgel, Synthesis and application of a new carboxylated cellulose derivative. Part II: removal of Co2+, Cu2+ and Ni2+ from bicomponent spiked aqueous solution, J. Colloid Interface Sci., 487 (2017) 266–280.
  54. E. Scrocco, J. Tomasi, The Electrostatic Molecular Potential as a Tool for the Interpretation of Molecular Properties, A. Davison, M.J.S. Dewar, Eds., New Concepts II, Topics in Current Chemistry Fortschritte der Chemischen Forschung, Vol. 42, Springer, Berlin, Heidelberg, 1973, pp. 95–170.
  55. M. Azam, P.K. Sahoo, R.K. Mohapatra, M. Kumar, A. Ansari, I.S. Moon, A. Chutia, S.I. Al-Resayes, S.K. Biswal, Structural investigations, Hirsfeld surface analyses, and molecular docking studies of a phenoxo-bridged binuclear zinc(II) complex, J. Mol. Struct., 1251 (2022) 132039, doi: 10.1016/j.molstruc. 2021.132039.
  56. Z. Demircioğlu, G. Kaştaş, Ç.A. Kaştaş, R. Frank, Spectroscopic, XRD, Hirshfeld surface and DFT approach (chemical activity, ECT, NBO, FFA, NLO, MEP, NPA and MPA) of
    (E)-4-bromo-2-[(4-bromophenylimino)methyl]-6-ethoxyphenol, J. Mol. Struct., 1191 (2019) 129–137.