1. Regulation of the Minister of the Environment of February 6, 2015 on municipal sewage sludge Dz.U. 2015 poz. 257 (in Polish).
  2. Code of Good Agricultural Practice. The Ministry of Agriculture and Rural Development. Ministry of the Environment, 2004 (in Polish).
  3. C. Iticescu, L. Georgescu, G. Murariu, A. Cîrciumaru, M. Timofti, The characteristics of sewage sludge used on agricultural lands. Engineering. 2018. ID: 134219529. DOI:10.1063/1.5060681.
  4. Commission of European Communities. Council Directive 91/271/EEC of 21 March 1991 concerning Urban wastewater treatment (amended by the 98/15 EC of 27 February 1998).
  5. Commission of European Communities. Council Directive 86/278/EEC of 4 July 1986 on the protection of the environment and in particular of the soil. when sewage sludge is used in agriculture.
  6. R. Kızılkaya, B. Bayrak. Effects of N-enriched sewage sludge on soil enzyme activities. Appl.Soil Ecol., 30 (3) (2005) 192–202.
  7. R.P. Singh, M. Agrawal. Potential benefits and risks of land application of sewage sludge. Waste Manag., 28 (2008)347–358.
  8. M. Skowrońska, E.J. Bielińska, K. Szymański, B. Futa, J. Antonkiewicz, B. Kołodziej. An integrated assessment of the long-term impact of municipal sewage sludge on the chemical and biological properties of soil. CATENA. 189 (2020) 104484.
  9. A.B. Patel, S. Shaikh Kunal, R. Jain, Ch. Desai, D. Madamwar. Polycyclic Aromatic Hydrocarbons: Sources. Toxicity. and Remediation Approaches. Front. Microbiol. 2020. doi: 10.3389/fmicb.2020.562813
  10. M. Honda, N. Suzuki. Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. Int. J. Environ. Res. Public. Health, 17 (4) (2020) 1363. doi: 10.3390/ijerph17041363
  11. A. Sieciechowicz, Z. Sadecka, S. Myszograj, M. Włodarczyk- Makuła, E. Wiśniowska, A. Turek. Occurrence of heavy metals and PAHs in soil and plants after application of sewage sludge to soil. Desal. Water Treat., 52 (2014) 4014—4026.
  12. R. Jing, S. Fusi, B.V. Kjellerup. Remediation of Polychlorinated Biphenyls (PCBs) in contaminated soils and sediment: state of knowledge and perspectives. Front. Environ. Sci., 2018. doi: 10.3389/fenvs.2018.00079
  13. W. Schnaak, T. Kuchler, M. Kujawa, K.P. Henschel, D. Sussenbach, R. Donau. Organic contaminants in sewage sludge and their ecotoxicological significance in the agricultural utilization of sewage sludge, Chemosphere, 35 (1–2) (1997) 5–11.
  14. N.A. Suciu, L. Lamastra, M. Trevisan. PAHs content of sewage sludge in Europe and its use as soil fertilizer, Waste Manag., 41 (2015) 119–127. doi: 10.1016/j.wasman.2015.03.018.
  15. Order no. 344/708/2004 on the approval of Technical Rules for the protection of the environment and in particular of the soil. when sewage sludge is used in agriculture.
  16. M. Mustafa. Leachability of Polychlorinated Biphenyls (PCBs) from Naturally Aged Soil in Relation to the Composition and Concentration of Dissolved Organic Matter (DOM) at Different pH. Umeå University. 2013.
  17. E. Wołejko, U. Wydro, A. Jabłońska-Trypuć, A. Butarewicz, T. Łoboda. The effect of sewage sludge fertilization on the concentration of PAHs in urban soils. Environ Pollut., 232 (2018) 347–357. doi: 10.1016/j.envpol.2017.08.120.
  18. P. Lindh, P. Lemenkova. Soil contamination from heavy metals and persistent organic pollutants (PAH. PCB and HCB) in the coastal area of Västernorrland. Sweden. Mineral Resources Management.,38 (2) (2022) 147–168. doi: 10.24425/gsm.2022.141662
  19. M. Seidl, J. Le Roux, R. Mazerolles, N. Bousserrhine. Assessment of leaching risk of trace metals. PAHs and PCBs from a brownfield located in a flooding zone. Environ. Sci. Pollut. Res. Int., 29 (3) (2022) 3600–3615.
  20. M. Włodarczyk-Makuła. Physical and chemical fates of organic micropollutants. Scholar Press. Saarsbrucken. 2015
  21. Standard methods. For the Examination of Water and Wastewater. 2018.
  22. Solid waste. Preparation of the water extract PN-Z-15009. 1997 (in Polish).
  23. P.D. Boem. Environmental Forensics. Ed. R. Morrison. B. Murphy. 2002.
  24. R. Fuoco, A. Ceccarini. Methods for the determination of polychlorobiphenyls (PCBs) in water. Handbook of water analysis. Marcel Dekker. New York. 2000.
  25. Y.Y. Haimes, D. Moser, E. Stakhin. Risk Based Decision Making in Water Resources. J. Infrastruct. Syst., ASCE., 12 (2006) 401–415.
  26. B. Tchórzewska-Cieślak, M. Włodarczyk-Makuła, J. Rak. Safety analysis of the wastewater treatment process in the field of organic pollutants including PAHs., Desal. Water Treat., 72 (2017) 146–155.
  27. D. Szpak, B. Tchórzewska-Cieślak, K. Pietrucha-Urbanik. Analysis of the turbidity of raw water in the context of watersupply safety, Desal. Water Treat., 186 (2020) 281–289.
  28. E. Wiśniowska, M. Włodarczyk-Makuła, J. Rak, B. Tchórzewska- Cieślak. Estimation of potential health and environmental risk associated with the presence of micropollutants in water intakes located in rural areas, Desal. Water Treat., 199 (2020) 339–351.
  29. M. Załęska-Radziwiłł. Ecotoxicological research in the process of ecological risk assessment in the aquatic environment. Scientific works. Environmental engineering. Publishing House of the Warsaw University of Technology. Warsaw, Iss. 52. 2007 (in Polish).
  30. E. Gorlach, T. Mazur. Agricultural chemistry. National Scientific Publishing House PWN, Warsaw, 2001 (in Polish).
  31. P.S. Khillare, V.K. Sattawan, D.S. Jyethi. Profile of polycyclic aromatic hydrocarbons in digested sewage sludge. Environ. Technol.41, 7 (2020) 842–851. doi: 10.1080/09593330.2018.1512654.
  32. D. Wang, J. Ma, H. Li, X. Zhang. Concentration and Potential Ecological Risk of PAHs in Different Layers of Soil in the Petroleum-Contaminated Areas of the Loess Plateau. China. Int J Environ. Res. Public Health., 15,8(2018) 1785. doi: 10.3390/ ijerph15081785.
  33. X. Chen, L. Yang, S.C.B. Mynenic, Y. Deng. Leaching of polycyclic aromatic hydrocarbons (PAHs) from sewage sludgederived biochar. Chem. Eng. J., 373 (1) (2019)840–845.
  34. A.D. Zand, P. Grathwohl, G. Nabibidhendi, N. Mehrdadi. Determination of leaching behaviour of polycyclic aromatic hydrocarbons from contaminated soil by column leaching test. Waste Manag Res., 28 (10) (2010) 913–920. doi: 10.1177/0734242X09345364.
  35. A. Tatarus, D. Puiu, R. Scutariu, M. Simion, M.A. Niculescu, T. Galaon. PCB congeners occurrence in sewage sludge frommunicipal wastewater treatment plants in romania international symposium “the environment and the Industry”. SIMI 2019. Proceedings Book Section Pollution Control and Monitoring 310
    doi: 10.21698/simi.2019.fp39
  36. D. Kaya, F. Karakas, F.D. Sanin, I. Imamoglu. PCBs in sludge: development of a practical extraction procedure and its application in an urban water resource recovery facility Water Environ Res., 87 (2) (2015)145–51. doi: 10.2175/106143014x1397 5035526022.
  37. Regulation of the Minister of the Environment of September 1, 2016 on the method of assessing land surface contamination Dz U 2016.Poz. 1395 (in Polish).
  38. Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on substances particularly harmful to the aquatic environment and conditions. to be met when discharging sewage into waters or into the ground. as well as when rainwater or meltwater is discharged into waters or water facilities Dz U z dnia 15 lipca 2019 r. Poz. 1311 (in Polish).
  39. Regulation of the Minister of Environmental Protection. of Natural Resources and Forestry of November 5, 1991 on the classification of waters and conditions. which should correspond to sewage discharged into waters or into the ground. Dz U. 1991. Nr 116. poz.503 (in Polish).