References

  1. D.T. Jia, R.J. Zhang, J. Shao, W. Zhang, L.L. Cai, W.L. Sun, Exposure to trace levels of metals and fluoroquinolones increases inflammation and tumorigenesis risk of zebrafish embryos, Environ. Sci. Ecotechnol., 10 (2022) 100162, doi: 10.1016/j.ese.2022.100162.
  2. M. Ashfaq, K.N. Khan, S. Rasool, G. Mustafa, M. Saif-Ur-Rehman, M.F. Nazar, Q. Sun, C.-P. Yu, Occurrence and ecological risk assessment of fluoroquinolone antibiotics in hospital waste of Lahore, Pakistan, Environ. Toxicol. Pharmacol., 42 (2016) 16–22.
  3. N. Nakada, K. Kiri, H. Shinohara, A. Harada, K. Kuroda, S. Takizawa, H. Takada, Evaluation of pharmaceuticals and personal care products as water-soluble molecular markers of sewage, Environ. Sci. Technol., 42 (2008) 6347–6353.
  4. C.-P. Yu, K.-H. Chu, Occurrence of pharmaceuticals and personal care products along the West Prong Little Pigeon River in East Tennessee, USA, Chemosphere, 75 (2009) 1281–1286.
  5. C.L. Tong, X.J. Zhuo, Y. Guo, Occurrence and risk assessment of four typical fluoroquinolone antibiotics in raw and treated sewage and in receiving waters in Hangzhou, China, J. Agric. Food. Chem., 59 (2011) 7303–7309.
  6. S. Sekar, M. Surianarayanan, V. Ranganathan, D.R. MacFarlane, A.B. Mandal, Choline-based ionic liquids-enhanced biodegradation of azo dyes, Environ. Sci. Technol., 46 (2012) 4902–4908.
  7. Z.L. Li, J.S. Wang, J.J. Chang, B.M. Fu, H.T. Wang, Insight into advanced oxidation processes for the degradation of fluoroquinolone antibiotics: removal, mechanism, and influencing factors, Sci. Total Environ., 10 (2022) 159172, doi: 10.1016/j.scitotenv.2022.159172.
  8. T. Soltani, M.H. Entezari, Sono-synthesis of bismuth ferrite nanoparticles with high photocatalytic activity in degradation of Rhodamine B under solar light irradiation, Chem. Eng. J., 223 (2013) 145–154.
  9. Q. Liu, L.-B. Zhong, Q.-B. Zhao, C. Frear, Y.-M. Zheng, Synthesis of Fe3O4/polyacrylonitrile composite electrospun nanofiber Mat for effective adsorption of tetracycline, ACS Appl. Mater. Interfaces, 7 (2015) 14573−14583.
  10. A. Gómez-Avilés, L. Sellaoui, M. Badawi, A. Bonilla-Petriciolet, J. Bedia, C. Belver, Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modelling, Chem. Eng. J., 404 (2021) 126601, doi: 10.1016/j.cej.2020.126601.
  11. Y. Wang, X.J. Wang, Y. Li, J. Li, Y.Y. Liu, S.Q. Xia, J.F. Zhao, Effects of exposure of polyethylene microplastics to air, water and soil on their adsorption behaviors for copper and tetracycline, Chem. Eng. J., 404 (2020) 126412, doi: 10.1016/j.cej.2020.126412.
  12. M.J. Ahmed, S.K. Theydan, Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis, J. Taiwan Inst. Chem. Eng., 45 (2014) 219–226.
  13. Y.P. Li, C.F. Zeng, C.Q. Wang, L.X. Zhang, Preparation of C@silica core/shell nanoparticles from ZIF-8 for efficient ciprofloxacin adsorption, Chem. Eng. J., 343 (2018) 645–653.
  14. J.J. Zhang, X.L. Yan, X.Y. Hu, R. Feng, M. Zhou, Direct carbonization of Zn/Co zeolitic imidazolate frameworks for efficient adsorption of Rhodamine B, Chem. Eng. J., 347 (2018) 640–647.
  15. L. Joseph, B.-M. Jun, M. Jang, C.M. Park, J.C. Muñoz-Senmache, A.J. Hernández-Maldonado, A. Heyden, M. Yu, Y.M. Yoon, Removal of contaminants of emerging concern by metal–organic framework nanoadsorbents: a review, Chem. Eng. J., 369 (2019) 928–946.
  16. R.M. Rego, G. Kuriya, M.D. Kurkuri, M. Kigga, MOF based engineered materials in water remediation: recent trends, J. Hazard. Mater., 403 (2021) 123605, doi: 10.1016/j.jhazmat.2020.123605.
  17. E.-S.I. El-Shafey, H. Al-Lawati, A.S. Al-Sumri, Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets, J. Environ. Sci., 24 (2012) 1579–1586.
  18. S.A.C. Carabineiro, T. Thavorn-amornsri, M.F.R. Pereira, J.L. Figueiredo, Adsorption of ciprofloxacin on surfacemodified carbon materials, Water Res., 45 (2011) 4583–4591.
  19. W.F. Liu, J. Zhang, C.L. Zhang, L. Ren, Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina: mechanisms, isotherms and kinetics, Chem. Eng. J., 171 (2011) 431–438.
  20. J.A. González, J.G. Bafico, M.E. Villanueva, S.A. Giorgieri, G.J. Copello, Continuous flow adsorption of ciprofloxacin by using a nanostructured chitin/graphene oxide hybrid material, Carbohydr. Polym., 188 (2018) 213–220.
  21. J.J. Yao, Y. Deng, D.-S. Li, H.P. Li, H.Y. Yang, Role of magnetic substances in adsorption removal of ciprofloxacin by gamma ferric oxide and ferrites co-modified carbon nanotubes, J. Colloid Interface Sci., 638 (2023) 872–881.
  22. D. Yang, M. Du, Z.-u. Din, S.K. Yang, L. Chen, J. Cai, J. Pang, X. Chen, W.P. Ding, Synthesis and ciprofloxacin adsorption of Gum Ghatti/Konjac Glucomannan/Zif-8 composite aerogel, Colloids Surf., A, 664 (2023) 131196, doi: 10.1016/j.colsurfa.2023.131196.
  23. C. Liu, M.Q. Zhao, S.Y. He, Z. Cao, W. Chen, Fe3O4 magnetic nanoparticles as a catalyst of oxone for the removal of a typical amino acid, Desal. Water Treat., 97 (2017) 262–271.
  24. S. Shi, Y.W. Fan, Y.M. Huang, Facile low temperature hydrothermal synthesis of magnetic mesoporous carbon nanocomposite for adsorption removal of ciprofloxacin antibiotics, Ind. Eng. Chem. Res., 52 (2013) 2604−2612.
  25. H.J. Wu, H.L. Zhang, W.J. Zhang, X.F. Yang, H. Zhou, Z.Q. Pan, D.S. Wang, Preparation of magnetic polyimide@Mg-Fe layered double hydroxides core-shell composite for effective removal of various organic contaminants from aqueous solution, Chemosphere, 219 (2019) 66–75.
  26. Ö. Kerkez-Kuyumcu, Ş.S. Bayazit, M. Abdel Salam, Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets, J. Ind. Eng. Chem., 36 (2016) 198–205.
  27. K.L. Bhowmik, A. Debnath, R.K. Nath, B. Saha, Synthesis of MnFe2O4 and Mn3O4 magnetic nano-composites with enhanced properties for adsorption of Cr(VI): artificial neural network modeling, Water Sci. Technol., 76 (2017) 3368–3378.
  28. A. Deb, M. Kanmani, A. Debnath, K.L. Bhowmik, B. Saha, Preparation and characterization of magnetic CaFe2O4 nanoparticles for efficient adsorption of toxic Congo red dye from aqueous solution: predictive modeling by artificial neural network, Desal. Water Treat., 89 (2017) 197–209.
  29. K.L. Bhowmik, A. Debnath, R.K. Nath, S. Das, K.K. Chattopadhyay, B. Saha, Synthesis and characterization of mixed phase manganese ferrite and hausmannite magnetic nanoparticle as potential adsorbent for methyl orange from aqueous media: artificial neural network modeling, J. Mol. Liq., 219 (2016) 1010–1022.
  30. I. Ghosh, S. Kar, T. Chatterjee, N. Bar, S.K. Das, Removal of methylene blue from aqueous solution using Lathyrus sativus husk: adsorption study, MPR and ANN modelling, Process Saf. Environ. Prot., 149 (2021) 345–361.
  31. M. Zahedinejad, N. Sohrabi, R. Mohammadi, Magnetic multi-walled carbon nanotubes as an efficient sorbent for pirimicarb removal from aqueous solutions in continuous (FBAC) and batch formats: thermodynamic, kinetic, isotherm study, optimization and modeling by RSM-ANN, J. Mol. Liq., 370 (2023) 120915, doi: 10.1016/j.molliq.2022.120915.
  32. J.L.S. Fagundez, M.S. Netto, G.L. Dotto, N.P.G. Salau, A new method of developing ANN-isotherm hybrid models for the determination of thermodynamic parameters in the adsorption of ions Ag+, Co2+ and Cu2+ onto zeolites ZSM-5, HY, and 4A, J. Environ. Chem. Eng., 9 (2021) 106126, doi: 10.1016/j. jece.2021.106126.
  33. Momina, A. Kafeel, Remediation of anionic dye from aqueous solution through adsorption on polyaniline/FO nanocomposite-modelling by artificial neural network (ANN), J. Mol. Liq., 360 (2022) 119497, doi: 10.1016/j.molliq.2022.119497.
  34. J.L.S. Fagundez, M.S. Netto, G.L. Dotto, N.P.G. Salau, A new method of developing ANN-isotherm hybrid models for the determination of thermodynamic parameters in the adsorption of ions Ag+, Co2+ and Cu2+ onto zeolites ZSM-5, HY, and 4A, J. Environ. Chem. Eng., 9 (2021) 106126, doi: 10.1016/j.jece.2021.106126.
  35. Z.U. Ahmad, L.G. Yao, Q.Y. Lian, F. Islam, M.E. Zappi, D.D. Gang, The use of artificial neural network (ANN) for modeling adsorption of sunset yellow onto neodymium modified ordered mesoporous carbon, Chemosphere, 256 (2020) 127081, doi: 10.1016/j.chemosphere.2020.127081.
  36. R. Khandanlou, H.R.F. Masoumi, M.B. Ahmad, K. Shameli, M. Basri, K. Kalantari, Enhancement of heavy metals sorption via nanocomposites of rice straw and Fe3O4 nanoparticles using artificial neural network (ANN), Ecol. Eng., 91 (2016) 249–256.
  37. Y.F. Zhu, E. Kockrick, T. Ikoma, N. Hanagata, S. Kaskel, An efficient route to rattle-type Fe3O4@SiO2 hollow mesoporous spheres using colloidal carbon spheres templates, Chem. Mater., 21 (2009) 2547–2553.
  38. F.Y.K. Wang, Y.L. Tang, B.B. Zhang, B.D. Chen, Y.L. Wang, Preparation of novel magnetic hollow mesoporous silica microspheres and their efficient adsorption, J. Colloid Interface Sci., 386 (2012) 129–134.
  39. S.Q. Jiao, M.Z. Wu, X.X. Yu, H. Zhang, Enhanced microwave absorption: the composite of Fe3O4 flakes and reduced graphene oxide with improved interfacial polarization, Adv. Eng. Mater., 22 (2020) 1901299, doi: 10.1002/adem.201901299.
  40. S.B. Huang, W.X. Zhang, S.Z. Cui, W.T. Wei, W.H. Chen, L.W. Mi, Large–scale uniform 3D composite Fe3O4@CF for high–performance supercapacitors design, ChemistrySelect, 1 (2016) 2909.
  41. V. Vadivelan, K. Vasanth Kumar, Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk, J. Colloid Interface Sci., 286 (2005) 90–100.
  42. L.J. You, Z.J. Wu, T.H. Kim, K.T. Lee, Kinetics and thermodynamics of bromophenol blue adsorption by a mesoporous hybrid gel derived from tetraethoxysilane and bis(trimethoxysilyl)hexane, J. Colloid Interface Sci., 300 (2006) 526–535.
  43. R.A. Reza, M. Ahmaruzzaman, A novel synthesis of Fe2O3@ activated carbon composite and its exploitation for the elimination of carcinogenic textile dye from an aqueous phase, RSC Adv., 5 (2015) 10575–10586.
  44. Y.C. Xiong, J.H. Zhao, L.Q. Li, Y.Y. Wang, X.H. Dai, F. Yu, J. Ma, Interfacial interaction between micro/nanoplastics and typical PPCPs and nanoplastics removal via electrosorption from an aqueous solution, Water Res., 184 (2020) 116100, doi: 10.1016/j. watres.2020.116100.
  45. J.N. Liang, J.H. Wu, Z. Zeng, M.Z. Li, W.Z. Liu, T.P. Zhang, Behavior and mechanisms of ciprofloxacin adsorption on aged polylactic acid and polyethlene microplastics, Environ. Sci. Pollut. Res., 30 (2023) 62938–62950.
  46. M.H. Zheng, P.W. Wu, L.Q. Li, F. Yu, J. Ma, Adsorption/ desorption behavior of ciprofloxacin on aged biodegradable plastic PLA under different exposure conditions, J. Environ. Chem. Eng., 11 (2023) 109256, doi: 10.1016/j.jece.2022.109256.