References

  1. K. Venkiteshwaran, P.J. McNamara, B.K. Mayer, Metaanalysis of non-reactive phosphorus in water, wastewater, and sludge, and strategies to convert it for enhanced phosphorus removal and recovery, Sci. Total Environ., 644 (2018) 661–674.
  2. H.E. Gray, T. Powell, S. Choi, D.S. Smith, W.J. Parker, Organic phosphorus removal using an integrated advanced oxidationultrafiltration process, Water Res., 182 (2020) 115968, doi: 10.1016/j.watres.2020.115968.
  3. D. Rabbani, F. Rashidipour, S. Nasseri, S.G. Abas Mousavi, M. Shaterian, High-efficiency removal of phosphorous from filtered activated sludge effluent using electrochemical process, J. Cleaner Prod., 263 (2020) 121444, doi: 10.1016/j.jclepro.2020.121444.
  4. APHA, Standard Methods for the Examination of Water and Wastewater, 2012. ISBN 9780875532356.
  5. C. Qin, H. Liu, L. Liu, S. Smith, D.L. Sedlak, A.Z. Gu, Bioavailability and characterization of dissolved organic nitrogen and dissolved organic phosphorus in wastewater effluents, Sci. Total Environ., 511 (2015) 47–53.
  6. A. Metcalf & Eddy Inc., Wastewater Engineering: Treatment and Reuse, International Edition, Revisada por Tchobanoglous, McGraw-Hill Education, New York, 2003, p. 819.
  7. A.E. Johnston, C.J. Dawson, Phosphorus in Agriculture and in Relation to Water Quality, Agricultural Industries Confederation Peterborough, 2005.
  8. J. Ano, A.S. Assémian, Y.A. Yobouet, K. Adouby, P. Drogui, Electrochemical removal of phosphate from synthetic effluent: a comparative study between iron and aluminum by using experimental design methodology, Process Saf. Environ. Prot., 129 (2019) 184–195.
  9. Ş. Irdemez, N. Demircioǧlu, Y.Ş. Yildiz, The effects of pH on phosphate removal from wastewater by electrocoagulation with iron plate electrodes, J. Hazard. Mater., 137 (2006) 1231–1235.
  10. G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38 (2004) 11–41.
  11. Y. Yavuz, A.S. Koparal, Ü.B. Öğütveren, Treatment of petroleum refinery wastewater by electrochemical methods, Desalination, 258 (2010) 201–205.
  12. S. Dehghan, M.B. Miranzadeh, D. Rabbani, Electrochemical process efficiency for the removal of organic phosphorus from synthetic wastewater, Feyz J. Kashan Univ. Med. Sci., 16 (2012).
  13. M. Asselin, P. Drogui, H. Benmoussa, J.-F. Blais, Effectiveness of electrocoagulation process in removing organic compounds from slaughterhouse wastewater using monopolar and bipolar electrolytic cells, Chemosphere, 72 (2008) 1727–1733.
  14. S. Vasudevan, J. Lakshmi, J. Jayaraj, G. Sozhan, Remediation of phosphate-contaminated water by electrocoagulation with aluminium, aluminium alloy and mild steel anodes, J. Hazard. Mater., 164 (2009) 1480–1486.
  15. Ş. Irdemez, Y.Ş. Yildiz, V. Tosunoǧlu, Optimization of phosphate removal from wastewater by electrocoagulation with aluminum plate electrodes, Sep. Purif. Technol., 52 (2006) 394–401.
  16. Ş. Irdemez, N. Demircioǧlu, Y.Ş. Yildiz, Z. Bingül, The effects of current density and phosphate concentration on phosphate removal from wastewater by electrocoagulation using aluminum and iron plate electrodes, Sep. Purif. Technol., 52 (2006) 218–223.
  17. E. Lacasa, P. Cañizares, C. Sáez, F.J. Fernández, M.A. Rodrigo, Electrochemical phosphates removal using iron and aluminium electrodes, Chem. Eng. J., 172 (2011) 137–143.
  18. A.R. Mesdaghinia, D. Rabbani, S. Nasseri, F. Vaezi, Effect of coagulants on electrochemical process for phosphorus removal from activated sludge effluent, Iran. J. Public Health, 32 (2003) 1–7.
  19. D. Rabbani, A.R. Mesdaghinia, S. Naseri, K. Naddafi, Effect of electrochemical process on phosphorous removal from activated sludge effluent, J. Kashan Univ. Med. Sci., 7 (2003) 21–29.
  20. Institute of Standards and Industrial Research of Iran, Drinking Water-Physical and Chemical Specifications, 2011 (in Persian).
  21. K.S. Hashim, R. Al Khaddar, N. Jasim, A. Shaw, D. Phipps, P. Kot, M.O. Pedrola, A.W. Alattabi, M. Abdulredha, R. Alawsh, Electrocoagulation as a green technology for phosphate removal from river water, Sep. Purif. Technol., 210 (2019) 135–144.
  22. Y. Lei, B. Song, R.D. van der Weijden, M. Saakes, C.J.N. Buisman, Electrochemical induced calcium phosphate precipitation: importance of local pH, Environ. Sci. Technol., 51 (2017) 11156–11164.
  23. Y. Wang, P. Kuntke, M. Saakes, R.D. van der Weijden, C.J.N. Buisman, Y. Lei, Electrochemically mediated precipitation of phosphate minerals for phosphorus removal and recovery: progress and perspective, Water Res., 209 (2022) 117891, doi: 10.1016/j.watres.2021.117891.
  24. Y. Wang, C. Shen, M. Zhang, B.T. Zhang, Y.G. Yu, The electrochemical degradation of ciprofloxacin using
    a SnO2-Sb/Ti anode: influencing factors, reaction pathways and energy demand, Chem. Eng. J., 296 (2016) 79–89.
  25. B. Al Aji, Y. Yavuz, A.S. Koparal, Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes, Sep. Purif. Technol., 86 (2012) 248–254.
  26. M. Kobya, E. Demirbas, A. Dedeli, M.T. Sensoy, Treatment of rinse water from zinc phosphate coating by batch and continuous electrocoagulation processes, J. Hazard. Mater., 173 (2010) 326–334.
  27. K. Venkiteshwaran, P.J. McNamara, B.K. Mayer, Metaanalysis of non-reactive phosphorus in water, wastewater, and sludge, and strategies to convert it for enhanced phosphorus removal and recovery, Sci. Total Environ., 644 (2018) 661–674.
  28. X. Chen, G. Chen, P.L. Yue, Investigation on the electrolysis voltage of electrocoagulation, Chem. Eng. Sci., 57 (2002) 2449–2455.
  29. M. Malakootian, A. Shahesmaeili, M. Faraji, H. Amiri, S. Silva Martinez, Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: a systematic review and meta-analysis, Process Saf. Environ. Prot., 134 (2020) 292–307.