1. X. Liu, L. Yan, W. Yin, L. Zhou, G. Tian, J. Shi, Z. Yang, D. Xiao, Z. Gu, Y. Zhao, A magnetic graphene hybrid functionalized with beta-cyclodextrins for fast and efficient removal of organic dyes, J. Mater. Chem. A, 2 (2014) 12296, doi: 10.1039/C4TA00753K.
  2. V.S. Munagapati, D.-S. Kim, Equilibrium isotherms, kinetics, and thermodynamics studies for Congo red adsorption using calcium alginate beads impregnated with nano-goethite, Ecotoxicol. Environ. Saf., 141 (2017) 226–234.
  3. D. Gautam, S. Kumari, B. Ram, G.S. Chauhan, K. Chauhan, A new hemicellulose-based adsorbent for malachite green, J. Environ. Chem. Eng., 6 (2018) 3889–3897.
  4. N.B. Swan, M.A.A. Zaini, Adsorption of Malachite green and Congo red dyes from water: recent progress and future outlook, Ecol. Chem. Eng. S, 26 (2019) 119–132.
  5. K. Naseem, Z.H. Farooqi, R. Begum, A. Irfan, Removal of Congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: a review, J. Cleaner Prod., 187 (2018) 296–307.
  6. R. Rehman, S. Abbas, S. Murtaza, T. Mahmud, W. Zaman, M. Salman, U. Shafique, Comparative removal of Congo red dye from water by adsorption on Grewia asiatica leaves, Raphanus sativus peels and activated charcoal, J. Chem. Soc. Pak., 34 (2012) 112–119.
  7. R. Septiawan, E. Amiruddin, A. Awaluddin, H. Hadianto, N. Davini, Synthesis of magnetic iron oxide nanoparticle from logas natural sand and its application for the catalytic degradation of Methylene blue, J. Phys.: Conf. Ser., 1655 (2020) 012014, doi: 10.1088/1742-6596/1655/1/012014.
  8. N.P. Raval, P.U. Shah, N.K. Shah, Adsorptive amputation of hazardous azo dye Congo red from wastewater: a critical review, Environ. Sci. Pollut. Res., 23 (2016) 14810–14853.
  9. R. Kishor, D. Purchase, G.D. Saratale, L.F.R. Ferreira, M. Bilal, H.M.N. Iqbal, R.N. Bharagava, Environment friendly degradation and detoxification of Congo red dye and textile industry wastewater by a newly isolated Bacillus cohnni (RKS9), Environ. Technol. Innovation, 22 (2021) 101425, doi: 10.1016/j.eti.2021.101425.
  10. M. Harja, G. Buema, D. Bucur, Recent advances in removal of Congo red dye by adsorption using an industrial waste, Sci. Rep., 12 (2022) 6087, doi: 10.1038/s41598-022-10093-3.
  11. P.O. Oladoye, M.O. Bamigboye, O.D. Ogunbiyi, M.T. Akano, Toxicity and decontamination strategies of Congo red dye, Groundwater Sustainable Dev., 19 (2022) 100844, doi: 10.1016/j.gsd.2022.100844.
  12. S.I. Siddiqui, E.S. Allehyani, S.A. Al-Harbi, Z. Hasan, M.A. Abomuti, H.K. Rajor, S. Oh, Investigation of Congo red toxicity towards different living organisms: a review, Processes, 11 (2023) 807, doi: 10.3390/pr11030807.
  13. M.S. Hussain, R. Rehman, M. Imran, A. Dar, M. Akram, E.A. Al-Abbad, Eco-friendly detoxification of Congo red dye from water by citric acid activated bioadsorbents consisting of watermelon and water chestnuts peels collected from indigenous resources, Adsorpt. Sci. Technol., 2022 (2022) e9056288, doi: 10.1155/2022/9056288.
  14. S. Basharat, R. Rehman, S. Basharat, Adsorptive behavior of tartaric acid treated Holarrhena antidysenterica and Citrullus colocynthis biowastes for decolourization of Congo red dye from aqueous solutions, J. Chem., 2022 (2022) e5724347, doi: 10.1155/2022/5724347.
  15. A. Afkhami, R. Moosavi, Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles, J. Hazard. Mater., 174 (2010) 398–403.
  16. A. Ausavasukhi, C. Kampoosaen, O. Kengnok, Adsorption characteristics of Congo red on carbonized leonardite, J. Cleaner Prod., 134 (2016) 506–514.
  17. J. Wang, Y. Liu, H. Xie, P. Li, X. Chen, W. Hu, Y. Wang, Y. Zhang, Facile synthesis of a magnetic chlorapatite composite with a high efficiency and recyclable adsorption for Congo red, Mater. Res. Express, 6 (2019) 116118, doi: 10.1088/2053-1591/ab4b9c.
  18. R. Rehman, F. Kanwal, L. Mitu, Microwave treated Gardenia jasminoides leaves for adsorptive removal of Direct red-28 dye in environmental benign way, Rev. de Chim., 69 (2019) 3445–3450.
  19. C. Wang, Y. Zhang, L. Yu, Z. Zhang, H. Sun, Oxidative degradation of azo dyes using tourmaline, J. Hazard. Mater., 260 (2013) 851–859.
  20. M.F. Elahmadi, N. Bensalah, A. Gadri, Treatment of aqueous wastes contaminated with Congo red dye by electrochemical oxidation and ozonation processes, J. Hazard. Mater., 168 (2009) 1163–1169.
  21. P.V. Nidheesh, M. Zhou, M.A. Oturan, An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes, Chemosphere, 197 (2018) 210–227.
  22. A. Lahkimi, M.A. Oturan, N. Oturan, M. Chaouch, Removal of textile dyes from water by the electro-Fenton process, Environ. Chem. Lett., 5 (2007) 35–39.
  23. B. Lodha, S. Chaudhari, Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions, J. Hazard. Mater., 148 (2007) 459–466.
  24. A. Ahmedi, M. Abouseoud, A. Abdeltif, C. Annabelle, Effect of diffusion on discoloration of Congo red by alginate entrapped turnip (Brassica rapa) peroxidase, Enzyme Res., 2015 (2015) 1–9.
  25. S. Sachdeva, A. Kumar, Preparation of nanoporous composite carbon membrane for separation of Rhodamine B dye, J. Membr. Sci., 329 (2009) 2–10.
  26. L.G. Devi, B.N. Murthy, S.G. Kumar, Photocatalytic activity of TiO2 doped with Zn2+ and V5+ transition metal ions: influence of crystallite size and dopant electronic configuration on photocatalytic activity, Mater. Sci. Eng., B, 166 (2010) 1–6.
  27. M. Punzi, F. Nilsson, A. Anbalagan, B.-M. Svensson, K. Jönsson, B. Mattiasson, M. Jonstrup, Combined anaerobic–ozonation process for treatment of textile wastewater: removal of acute toxicity and mutagenicity, J. Hazard. Mater., 292 (2015) 52–60.
  28. C.H. Neoh, C.Y. Lam, C.K. Lim, A. Yahya, H.H. Bay, Z. Ibrahim, Z.Z. Noor, Biodecolorization of recalcitrant dye as the sole source of nutrition using Curvularia clavata NZ2 and decolorization ability of its crude enzymes, Environ. Sci. Pollut. Res., 22 (2015) 11669–11678.
  29. S. Hokkanen, B. Doshi, V. Srivastava, L. Puro, R. Koivula, Arsenic(III) removal from water by hydroxyapatite‐bentonite clay‐nanocrystalline cellulose, Environ. Prog. Sustainable Energy, 38 (2019) 13147, doi: 10.1002/ep.13147.
  30. Z. Zhang, Y. Li, Q. Du, Q. Li, Adsorption of Congo red from aqueous solutions by porous soybean curd xerogels, Pol. J. Chem. Technol., 20 (2018) 95–102.
  31. L. Wang, A. Wang, Adsorption characteristics of Congo red onto the chitosan/montmorillonite nanocomposite, J. Hazard. Mater., 147 (2007) 979–985.
  32. C. Namasivayam, D. Kavitha, Removal of Congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste, Dyes Pigm., 54 (2002) 47–58.
  33. E. Lorencgrabowska, G. Gryglewicz, Adsorption characteristics of Congo red on coal-based mesoporous activated carbon, Dyes Pigm., 74 (2007) 34–40.
  34. A. Tor, Y. Cengeloglu, Removal of Congo red from aqueous solution by adsorption onto acid activated red mud, J. Hazard. Mater., 138 (2006) 409–415.
  35. K.-S. Chou, J.-C. Tsai, C.-T. Lo, The adsorption of Congo red and vacuum pump oil by rice hull ash, Bioresour. Technol., 78 (2001) 217–219.
  36. K.G. Bhattacharyya, A. Sharma, Azadirachta indica leaf powder as an effective biosorbent for dyes: a case study with aqueous Congo red solutions, J. Environ. Manage., 71 (2004) 217–229.
  37. R. Han, D. Ding, Y. Xu, W. Zou, Y. Wang, Y. Li, L. Zou, Use of rice husk for the adsorption of Congo red from aqueous solution in column mode, Bioresour. Technol., 99 (2008) 2938–2946.
  38. S. Chatterjee, S. Chatterjee, B.P. Chatterjee, A.K. Guha, Adsorptive removal of Congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding mechanism, equilibrium and kinetics, Colloids Surf., A, 299 (2007) 146–152.
  39. Y. Guan, W. Cao, X. Wang, A. Marchetti, Y. Tu, Hydroxyapatite nano-rods for the fast removal of Congo red dye from aqueous solution, Mater. Res. Express, 5 (2018) 065053, doi: 10.1088/2053-1591/aaccb8.
  40. J. Jiang, Y. Long, X. Hu, J. Hu, M. Zhu, S. Zhou, A facile microwave-assisted synthesis of mesoporous hydroxyapatite as an efficient adsorbent for Pb2+ adsorption, J. Solid State Chem., 289 (2020) 121491, doi: 10.1016/j.jssc.2020.121491.
  41. K. Bouiahya, I. Es-saidi, C.E. Bekkali, A. Laghzizil, D. Robert, J.M. Nunzi, A. Saoiabi, Synthesis and properties of aluminahydroxyapatite composites from natural phosphate for phenol removal from water, Colloid Interface Sci. Commun., 31 (2019) 100188, doi: 10.1016/j.colcom.2019.100188.
  42. W. Wei, R. Sun, Z. Jin, J. Cui, Z. Wei, Hydroxyapatite–gelatin nanocomposite as a novel adsorbent for nitrobenzene removal from aqueous solution, Appl. Surf. Sci., 292 (2014) 1020–1029.
  43. M. Harja, G. Ciobanu, Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite, Sci. Total Environ., 628–629 (2018) 36–43.
  44. G.N. Kousalya, M.R. Gandhi, C.S. Sundaram, S. Meenakshi, Synthesis of nano-hydroxyapatite chitin/chitosan hybrid biocomposites for the removal of Fe(III), Carbohydr. Polym., 82 (2010) 594–599.
  45. Y. Zhou, W. Li, X. Jiang, Y. Sun, H. Yang, Q. Liu, Y. Cao, Y. Zhang, H. Cheng, Synthesis of strontium (Sr) doped hydroxyapatite (HAp) nanorods for enhanced adsorption of Cr(VI) ions from wastewater, Ceram. Int., 47 (2021) 16730–16736.
  46. P.N. Nam, D.T.M. Thanh, N.T. Phuong, N.T.T. Trang, C.T. Hong, V.T.K. Anh, T.D. Lam, N.T. Thom, Adsorption of Ag+ ions using hydroxyapatite powder and recovery silver by electrodeposition, Vietnam J. Chem., 59 (2021) 179–186.
  47. P.T. Nguyen, X.T. Nguyen, T.V. Nguyen, T.T. Nguyen, T.Q. Vu, H.T. Nguyen, N.T. Pham, T.M.T. Dinh, Treatment of Cd2+ and Cu2+ ions using modified apatite ore, J. Chem., 2020 (2020) 1–12, doi: 10.1155/2020/6527197.
  48. S. Pai, S.M. Kini, R. Selvaraj, A. Pugazhendhi, A review on the synthesis of hydroxyapatite, its composites and adsorptive removal of pollutants from wastewater, J. Water Process Eng., 38 (2020) 101574, doi: 10.1016/j.jwpe.2020.101574.
  49. I. Nikčević, V. Jokanović, M. Mitrić, Z. Nedić, D. Makovec, D. Uskoković, Mechanochemical synthesis of nanostructured fluorapatite/fluorhydroxyapatite and carbonated fluorapatite/fluorhydroxyapatite, J. Solid State Chem. 177 (2004) 2565–2574.
  50. D.L. Thi, T.L.T. Phuong, H.V. Thi, T.D.T. Mai, Research on adsorption of Zn2+ by hydroxyapatite/chitosan nanocomposite, Vietnam J. Catal. Adsorpt., 9 (2020) 62–69.
  51. N.T. Thom, D.T.M. Thanh, P.T. Nam, N.T. Phuong, C. Buess- Herman, Adsorption behavior of Cd2+ ions using hydroxyapatite (HAp) powder, Green Process. Synth., 7 (2018) 409–416.
  52. Wahajuddin, S. Arora, Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers, Int. J. Nanomed., (2012) 3445, doi: 10.2147/IJN.S30320.
  53. S.J. Olusegun, T.G.F. Souza, G. de O. Souza, M. Osial, N.D.S. Mohallem, V.S.T. Ciminelli, P. Krysinski, Iron-based materials for the adsorption and photocatalytic degradation of pharmaceutical drugs: a comprehensive review of the mechanism pathway, J. Water Process Eng., 51 (2023) 103457, doi: 10.1016/j.jwpe.2022.103457.
  54. M. Żuk, W. Gawęda, A. Majkowska-Pilip, M. Osial, M. Wolski, A. Bilewicz, P. Krysiński, Hybrid radiobioconjugated superparamagnetic iron oxide-based nanoparticles for multimodal cancer therapy, Pharmaceutics, 13 (2021) 1843, doi: 10.3390/pharmaceutics13111843.
  55. S.J. Olusegun, M. Osial, A. Majkowska-Pilip, K. Żelechowska-Matysiak, D. Nieciecka, M. Krajewski, M. Pękała, P. Krysinski, Synthesis and characterization of Sr2+ and Gd3+ doped magnetite nanoparticles for magnetic hyperthermia and drug delivery application, Ceram. Int., (2023), doi: 10.1016/j.ceramint.2023.03.102.
  56. M. Osial, A. Pregowska, M. Warczak, M. Giersig, Magnetorheological fluids: a concise review of composition, physicochemical properties, and models, J. Intell. Mater. Syst. Struct., (2023), doi: 10.1177/1045389X231157357.
  57. A.S. Teja, P.-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Prog. Cryst. Growth Charact. Mater., 55 (2009) 22–45.
  58. J. Tang, M. Su, Q. Wu, L. Wei, N. Wang, E. Xiao, H. Zhang, Y. Wei, Y. Liu, C. Ekberg, B.-M. Steenari, T. Xiao, Highly efficient recovery and clean-up of four heavy metals from MSWI fly ash by integrating leaching, selective extraction and adsorption, J. Cleaner Prod., 234 (2019) 139–149.
  59. A. Sebastian, A. Nangia, M.N.V. Prasad, A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: implications to treat metal contaminated water and heavy metal stress in Oryza sativa L., J. Cleaner Prod., 174 (2018) 355–366.
  60. J. Hu, G. Chen, I.M.C. Lo, Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles, Water Res., 39 (2005) 4528–4536.
  61. N.H.Z. Abidin, N.S. Sambudi, N.A. Kamal, Composite of hydroxyapatite-Fe3O4 for the adsorption of Methylene blue, ASEAN J. Chem. Eng., 20 (2020) 140, doi: 10.22146/ajche.55015.
  62. A. Vahdat, B. Ghasemi, M. Yousefpour, Synthesis of hydroxyapatite and hydroxyapatite/Fe3O4 nanocomposite for removal of heavy metals, Environ. Nanotechnol. Monit. Manage., 12 (2019) 100233, doi: 10.1016/j.enmm.2019.100233.
  63. H.V.T. Luong, N.H. Nguyen, G.H. Khuu, Y.P. Bui, Q.Q.V. Thieu, T.N.M. Ngo, T.B.Q. Tran, Preparation of Fe3O4/HAp nanoparticles from eggshells with highly adsorption capacity for Methylene blue, Can Tho Univ. J. Sci., 14 (2022) 18–27.
  64. A. Dâas, O. Hamdaoui, Extraction of anionic dye from aqueous solutions by emulsion liquid membrane, J. Hazard. Mater., 178 (2010) 973–981.
  65. H. Tanaka, E. Tsuda, H. Nishikawa, M. Fuji, FT-IR studies of adsorption and photocatalytic decomposition under UV irradiation of dimethyl sulfide on calcium hydroxyapatite, Adv. Powder Technol., 23 (2012) 115–119.
  66. S. Iconaru, M. Motelica-Heino, R. Guegan, M. Beuran, A. Costescu, D. Predoi, Adsorption of Pb(II) ions onto hydroxyapatite nanopowders in aqueous solutions, Materials, 11 (2018) 2204, doi: 10.3390/ma11112204.
  67. V.T. Hanh, P.T. Nam, N.T. Phuong, D.T.M. Thanh, Electrodeposition of co-doped hydroxyapatite coating on 316L stainless steel, Vietnam J. Sci. Technol., 56 (2018) 94, doi: 10.15625/2525-2518/56/1/10030.
  68. J. Kim, N.S. Sambudi, K. Cho, Removal of Sr2+ using high surface-area hydroxyapatite synthesized by non-additive in-situ precipitation, J. Environ. Manage., 231 (2019) 788–794.
  69. O.V. Alekseeva, A.N. Rodionova, N.A. Bagrovskaya, A.V. Agafonov, Synthesis, structure, and properties of a bentonite–magnetite composite, Prot. Met. Phys. Chem. Surf., 52 (2016) 819–824.
  70. A.A. Alqadami, M.A. Khan, M. Otero, M.R. Siddiqui, B.-H. Jeon, K.M. Batoo, A magnetic nanocomposite produced from camel bones for an efficient adsorption of toxic metals from water, J. Cleaner Prod., 178 (2018) 293–304.
  71. M. Osial, M. Nowicki, E. Klejman, L. Frąś, Investigation of the well-dispersed magnetorheological oil-based suspension with superparamagnetic nanoparticles using modified split Hopkinson pressure bar, Rheol. Acta, 61 (2022) 111–122.
  72. S. Dagdelen, M. Mackiewicz, M. Osial, E. Waleka-Bargiel, J. Romanski, P. Krysinski, M. Karbarz, Redox-responsive degradable microgel modified with superparamagnetic nanoparticles exhibiting controlled, hyperthermia-enhanced drug release, J. Mater. Sci., 58 (2023) 4094–4114.
  73. P. Pietrzyk, N.T. Phuong, S.J. Olusegun, N.H. Nam, D.T.M. Thanh, M. Giersig, P. Krysiński, M. Osial, Titan yellow and Congo red removal with superparamagnetic iron-oxidebased nanoparticles doped with zinc, Magnetochemistry, 8 (2022) 91, doi: 10.3390/magnetochemistry8080091.
  74. D.T.M. Thanh, N.T. Phuong, D.T. Hai, H.N. Giang, N.T. Thom, P.T. Nam, N.T. Dung, M. Giersig, M. Osial, Influence of experimental conditions during synthesis on the physicochemical properties of the SPION/hydroxyapatite nanocomposite for magnetic hyperthermia application, Magnetochemistry, 8 (2022) 90, doi: 10.3390/magnetochemistry8080090.
  75. Z. Ma, Y. Guan, H. Liu, Synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups, J. Polym. Sci. Polym. Symp., 43 (2005) 3433–3439.
  76. P. Pietrzyk, E.I. Borowska, P. Hejduk, B.C. Camargo, M. Warczak, T.P. Nguyen, A. Pregowska, M. Gniadek, J. Szczytko, S. Wilczewski, M. Osial, Green composites based on volcanic red algae Cyanidiales, cellulose, and coffee waste biomass modified with magnetic nanoparticles for the removal of Methylene blue, Environ. Sci. Pollut. Res., (2023), doi: 10.1007/s11356-023-26425-3.
  77. M. Mercurio, S. Olusegun, K. Malinska, K. Wystalska, J. Sobik- Szołtysek, A. Dąbrowska, P. Krysiński, M. Osial, Removal of tetracycline and rhodamine from aqueous systems by pristine biochar derived from poultry manure, Desal. Water Treat., 288 (2023) 72–86.
  78. S. Hamidzadeh, M. Torabbeigi, S.J. Shahtaheri, Removal of crystal violet from water by magnetically modified activated carbon and nanomagnetic iron oxide, J. Environ. Health Sci. Eng., 13 (2015) 8,
    doi: 10.1186/s40201-015-0156-4.
  79. C. Lei, X. Zhu, B. Zhu, J. Yu, W. Ho, Hierarchical NiO–SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water, J. Colloid Interface Sci., 466 (2016) 238–246.
  80. H. Zhao, Y. Lang, Adsorption behaviors and mechanisms of florfenicol by magnetic functionalized biochar and reed biochar, J. Taiwan Inst. Chem. Eng., 88 (2018) 152–160.
  81. V.S. Munagapati, V. Yarramuthi, Y. Kim, K.M. Lee, D.-S. Kim, Removal of anionic dyes (Reactive black 5 and Congo red) from aqueous solutions using banana peel powder as an adsorbent, Ecotoxicol. Environ. Saf., 148 (2018) 601–607.
  82. H.-Y. Zhu, Y.-Q. Fu, R. Jiang, J.-H. Jiang, L. Xiao, G.-M. Zeng, S.-L. Zhao, Y. Wang, Adsorption removal of Congo red onto magnetic cellulose/Fe3O4/activated carbon composite: Equilibrium, kinetic and thermodynamic studies, Chem. Eng. J., 173 (2011) 494–502.
  83. N.T. Phuong, N.T. Thom, P.T. Nam, N.V. Trang, T.T.T. Huong, D.T. Hai, L.P. Thu, M. Osial, D.T.M. Thanh, Co2+ and Cr3+ ions removal from wastewater by using nanostructural hydroxyapatite, Vietnam J. Chem., 60 (2022) 135–147.
  84. S.J. Olusegun, M. Osial, T.G.F. Souza, M. Krajewski, G.L.S. Rodrigues, P. Marek, P. Krysinski, Comparative characteristics and enhanced removal of tetracycline and ceftriaxone by Fe3O4-lignin and Fe3O4-carbon-based lignin: mechanism, thermodynamic evaluation, and DFT calculation, J. Mol. Liq., 371 (2023) 121075, doi: 10.1016/j.molliq.2022.121075.
  85. K. Litefti, M.S. Freire, M. Stitou, J. González-Álvarez, Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark, Sci. Rep., 9 (2019) 16530, doi: 10.1038/ s41598-019-53046-z.
  86. M. Harja, N. Lupu, H. Chiriac, D.-D. Herea, G. Buema, Studies on the removal of Congo red dye by an adsorbent based on fly-ash@Fe3O4 mixture, Magnetochemistry, 8 (2022) 125, doi: 10.3390/magnetochemistry8100125.
  87. M.L.D. Bhatlu, P.S. Athira, N. Jayan, D. Barik, M.S. Dennison, Preparation of breadfruit leaf biochar for the application of Congo red dye removal from aqueous solution and optimization of factors by RSM-BBD, Adsorpt. Sci. Technol., 2023 (2023) e7369027, doi: 10.1155/2023/7369027.
  88. Y. Xu, J. Jin, X. Li, Y. Han, H. Meng, T. Wang, X. Zhang, Fabrication of hybrid magnetic HKUST-1 and its high efficient adsorption performance for Congo red dye, RSC Adv., 5 (2015), doi: 10.1039/C5RA00384A.
  89. S. Jana, S.S. Pradhan, T. Tripathy, Poly(N,N-dimethylacrylamideco-acrylamide) grafted hydroxyethyl cellulose hydrogel: a useful Congo red dye remover, J. Polym. Environ., 26 (2018) 2730–2747.
  90. M.A. Adebayo, J.M. Jabar, J.S. Amoko, E.O. Openiyi, O.O. Shodiya, Coconut husk-raw clay-Fe composite: preparation, characteristics and mechanisms of Congo red adsorption, Sci. Rep., 12 (2022) 14370, doi: 10.1038/s41598-022-18763-y.
  91. R. Lafi, I. Montasser, H. Amor, Adsorption of Congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration, Adsorpt. Sci. Technol., 37 (2018) 026361741881922, doi: 10.1177/0263617418819227.
  92. S. He, X. Liu, P. Yan, A. Wang, J. Su, X. Su, Preparation of gemini surfactant/graphene oxide composites and their superior performance for Congo red adsorption, RSC Adv., 9 (2019) 4908–4916.
  93. N.E. Messaoudi, M.E. Khomri, N. Chlif, Z.G. Chegini, A. Dbik, S. Bentahar, A. Lacherai, Desorption of Congo red from dyeloaded Phoenix dactylifera date stones and Ziziphus lotus jujube shells, Groundwater Sustainable Dev., 12 (2021) 100552, doi: 10.1016/j.gsd.2021.100552.
  94. N. Ghosh, S. Sen, G. Biswas, A. Saxena, P.K. Haldar, Adsorption and desorption study of reusable magnetic iron oxide nanoparticles modified with Justicia adhatoda leaf extract for the removal of textile dye and antibiotic, Water Air Soil Pollut., 234 (2023) 202, doi: 10.1007/s11270-023-06217-8.
  95. G. Sarojini, S.V. Babu, M. Rajasimman, Adsorptive potential of iron oxide-based nanocomposite for the sequestration of Congo red from aqueous solution, Chemosphere, 287 (2022) 132371, doi: 10.1016/j.chemosphere.2021.132371.
  96. Q. Deng, Q. Luo, M. Li, J. Tu, L. Guo, L. Wu, T. Zhang, L. Shi, H. Zhang, F. Dong, Highly efficient removal of Congo red from aqueous solution by lime-preconditioned phosphogypsum, ChemistrySelect, 7 (2022) e202200139,
    doi: 10.1002/slct.202200139.