1. D. Nayeri, S.A. Mousavi, A comprehensive review on the coagulant recovery and reuse from drinking water treatment sludge, J. Environ. Manage., 319 (2022) 115649, doi: 10.1016/j.jenvman.2022.115649.
  2. H. Xu, H. Pei, Y. Jin, C. Ma, Y. Wang, J. Sun, H. Li, Highthroughput sequencing reveals microbial communities in drinking water treatment sludge from six geographically distributed plants, including potentially toxic cyanobacteria and pathogens, Sci. Total Environ., 634 (2018) 769–779.
  3. N. Yuan, C. Wang, Y. Pei, Bacterial toxicity assessment of drinking water treatment residue (DWTR) and lake sediment amended with DWTR, J. Environ. Manage., 182 (2016) 21–28.
  4. S. Chaturvedi, P.N. Dave, Removal of iron for safe drinking water, Desalination, 303 (2012) 1–11.
  5. F.A. Elías, A.G. Marcos, M.C. Bobadilla, E.D. de Santo Domingo, Valorization of bio-waste for the removal of aluminum from industrial wastewater, J. Cleaner Prod., 264 (2020) 121608, doi: 10.1016/j.jclepro.2020.121608.
  6. Y. Zhao, R. Liu, O.W. Awe, Y. Yang, C. Shen, Acceptability of land application of alum-based water treatment residuals–an explicit and comprehensive review, Chem. Eng. J., 353 (2018) 717–726.
  7. E.A. Elkhatib, A.M. Mahdy, Land application of water treatment residuals: effect on wheat yield and the availability of phosphorus and aluminium, Int. J. Environ. Waste Manage., 2 (2008) 647–665.
  8. W.P. Teoh, S.Y. Chee, N.Z. Habib, V.S. Chok, K.H. Lem, S.Y. Looi, C.A. Ng, Recycling of treated alum sludge and glycerine pitch in the production of eco-friendly roofing tiles: physical properties, durability, and leachability, J. Build. Eng., 52 (2022) 104387, doi: 10.1016/j.jobe.2022.104387.
  9. F.A. Fiore, S. Rodgher, C.Y.K. Ito, V.S. Santos Bardini, L.M.G. Klinsky, Water sludge reuse as a geotechnical component in road construction: experimental study, Cleaner Eng. Technol., 9 (2022) 100512, doi: 10.1016/j.clet.2022.100512.
  10. R. Aline, M.E.L. Tejeda, B.M.E. Gimenez, Reuse of water treatment plant sludge mixed with lateritic soil in geotechnical works, Environ. Challenges, 7 (2022) 100465, doi: 10.1016/j.envc.2022.100465.
  11. S.C. Gomes, J.L. Zhou, X. Zeng, G. Long, Water treatment sludge conversion to biochar as cementitious material in cement composite, J. Environ. Manage., 306 (2022) 114463, doi: 10.1016/j.jenvman.2022.114463.
  12. M. Khedher, J. Awad, E. Donner, B. Drigo, R. Fabris, M. Harris, K. Braun, C.W.K. Chow, The potential reuse of drinking water treatment sludge for organics removal and disinfection by-products formation control, J. Environ. Chem. Eng., 10 (2022) 108001, doi: 10.1016/j.jece.2022.108001.
  13. C. Kang, Y. Zhao, C. Tang, O. Addo-Bankas, Use of aluminumbased water treatment sludge as coagulant for animal farm wastewater treatment, J. Water Process Eng., 46 (2022) 102645, doi: 10.1016/j.jwpe.2022.102645.
  14. S. Yaghoobian, M.H. Zonoozi, M. Saeedi, Performance evaluation of Fe-based water treatment sludge for dewatering of iron ore tailings slurry using coagulation-flocculation process: optimization through response surface methodology, J. Environ. Manage., 316 (2022) 115240, doi: 10.1016/j.jenvman.2022.115240.
  15. A.B. Abba, S. Saggai, Y. Touil, N. Al-Ansari, S. Kouadri, F.Z. Nouasria, H.M. Najm, N.S. Mashaan, M.M.A. Eldirderi, K.M. Khedher, Copper and zinc removal from wastewater using alum sludge recovered from water treatment plant, Sustainability, 14 (2022) 9806, doi: 10.3390/su14169806.
  16. H.H.P. Quang, K.T. Phan, N.T. Dinh, T.N.T. Thi, P. Kajitvichyanukul, P. Raizada, P. Singh, V.-H. Nguyen, Using ZrO2 coated sludge from drinking water treatment plant as a novel adsorbent for nitrate removal from contaminated water, Environ. Res., 212 (2022) 113410, doi: 10.1016/j.envres.2022.113410.
  17. H. Zeng, C. Liu, F. Wang, J. Zhang, D. Li, Disposal of ironmanganese sludge from waterworks and its potential for arsenic removal, J. Environ. Chem. Eng., 10 (2022) 108480, doi: 10.1016/j.jece.2022.108480.
  18. Z Zhou, Y. Yang, X. Li, Effects of ultrasound pretreatment on the characteristic evolutions of drinking water treatment sludge and its impact on coagulation property of sludge recycling process, Ultrason. Sonochem., 27 (2015) 62–71.
  19. L. He, Y. Chen, F. Sun, Y. Li, W. Huang, S. Yang, Controlled release of phosphorus using lanthanum-modified hydrochar synthesized from water treatment sludge: adsorption behavior and immobilization mechanism, J. Water Process Eng., 50 (2022) 103319, doi: 10.1016/j.jwpe.2022.103319.
  20. I. Ballou, S. Kounbach, J. Naja, Z.E. Bakher, K. Laraki, F. Raibi, R. Saadi, S. Kholte, A new approach of aluminum extraction from drinking water treatment sludge using ammonium sulfate roasting process, Miner. Eng., 189 (2022) 107859, doi: 10.1016/j.mineng.2022.107859.
  21. D. Nayeri, S.A. Mousavi, A comprehensive review on the coagulant recovery and reuse from drinking water treatment sludge, J. Environ. Manage., 319 (2022) 115649, doi: 10.1016/j.jenvman.2022.115649.
  22. C.C. Castro-Jiménez, J.C. Saldarriaga-Molina, E.F. García, M.A. Correa-Ochoa, Primary treatment of domestic wastewater with the use of unmodified and chemically modified drinking water treatment sludge, Sustainability, 14 (2022) 9827, doi: 10.3390/su14169827.
  23. A.V. Dahasahastra, K. Balasundaram, M.V. Latkar, Turbidity removal from synthetic turbid water using coagulant recovered from water treatment sludge: a potential method to recycle and conserve aluminium, Hydrometallurgy, 213 (2022) 105939, doi: 10.1016/j.hydromet.2022.105939.
  24. A.G. Mora-León, C.C. Castro-Jiménez, J.C. Saldarriaga-Molina, E.F. García, M.A. Correa-Ochoa, Aluminium recovered coagulant from water treatment sludge as an alternative for improving the primary treatment of domestic wastewater, J. Cleaner Prod., 346 (2022) 131229, doi: 10.1016/j.jclepro.2022.131229.
  25. T. Gu, S.O. Rastager, S.M. Mousavi, M. Li, M. Zhou, Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge, Bioresour. Technol., 261 (2018) 428–440.
  26. Y. Xu, C. Zhang, M. Zhao, H. Rong, K. Zhang, Q. Chen, Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge, Chemosphere, 168 (2017) 1152–1157.
  27. T. Kamizela, M. Worwąg, Processing of water treatment sludge by bioleaching, Energies, 13 (2020) 6539, doi: 10.3390/en13246539.
  28. Q. Li, C. Wang, B. Li, C. Sun, F. Deng, C. Song, S. Wang, Isolation of Thiobacillus spp. and its application in the removal of heavy metals from activated sludge, Afr. J. Biotechnol., 11 (2012) 16336–16341.
  29. Regulation of the Minister of Maritime Economy and Inland Navigation on Substances Particularly Harmful to the Aquatic Environment and the Conditions to be Met When Introducing Sewage into Waters or Into the Ground, as Well as When Discharging Rainwater or Meltwater into Waters or Water Facilities, Warsaw, 2019. Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej, w sprawie substancji szczególnie szkodliwych dla środowiska wodnego oraz warunków, jakie należy spełnić przy wprowadzaniu do wód lub do ziemi ścieków, a także przy odprowadzaniu wód opadowych lub roztopowych do wód lub do urządzeń wodnych, Dz.U. 2019 poz. 1311, Warszawa, 2019 (in Polish).
  30. Regulation of the Minister of Construction on the Method of Fulfilling the Obligations of Industrial Wastewater Suppliers and the Conditions for Discharging Wastewater into Sewage Systems, Warsaw, 2016. Rozporządzenie Ministra Budownictwa, w sprawie sposobu realizacji obowiązków dostawców ścieków przemysłowych oraz warunków wprowadzania ścieków do urządzeń kanalizacyjnych, Dz.U. 2016 poz. 1757, Warszawa, 2016 (in Polish).
  31. G. Akinci, D.E. Guven, Bioleaching of heavy metals contaminated sediment by pure and mixed cultures of Acidithiobacillus spp., Desalination, 268 (2011) 221–226.
  32. Y.-M. Wen, Q.-P. Wang, C. Tang, Z.-L. Chen, Bioleaching of heavy metals from sewage sludge by Acidithiobacillus thiooxidans—a comparative study, J. Soil Sci., 12 (2012) 900–908.
  33. A. Potysz, P.N.L. Lens, J. Vossenberg, E.R. Rene, M. Grybos, G. Guibaud, J. Kierczak, E.D. Hullebusch, Comparison of Cu, Zn and Fe bioleaching from Cu-metallurgical slags in the presence of Pseudomonas fluorescens and Acidithiobacillus thiooxidans, Appl. Geochem., 68 (2016) 39–52.
  34. T. Naseri, N. Bahaloo-Horeh, S.M. Mousavi, Environmentally friendly recovery of valuable metals from spent coin cells through two-step bioleaching using Acidithiobacillus thiooxidans, J. Environ. Manage., 235 (2019) 357–367.
  35. A. Priya, S. Hait, Extraction of metals from high grade waste printed circuit board by conventional and hybrid bioleaching using Acidithiobacillus ferrooxidans, Hydrometallurgy, 177 (2018) 132–139.
  36. S.Y. Chen, P.L. Lin, Optimization of operating parameters for the metal bioleaching process of contaminated soil, Sep. Purif. Technol., 71 (2010) 178–185.
  37. D. Mishra, Y.H. Rhee, Current research trends of microbiological leaching for metal recovery from industrial wastes, Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol., 2 (2010) 1289–1292.
  38. L. Yang, D. Zhao, J. Yang, W. Wang, P. Chen, S. Zhang, L. Yan, Acidithiobacillus thiooxidans and its potential application, Appl. Microbiol. Biotechnol., 103 (2019) 7819–7833.
  39. U.U. Jadhav, H. Hocheng, A review of recovery of metals from industrial waste, J. Achiev. Mater. Manuf., 54 (2012) 159–167.