References

- P.K. Namburu, D.K. Das, K.M. Tanguturi, R.S. Vajjha, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, Int. J. Therm. Sci. 48 (2009) 290–302.
- K. Sefiane, R. Bennacer, Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates, Adv. Colloid Interface Sci., 147–148 (2009) 263–271.
- A.R. Gorjaei, M. Soltani, M. Bahiraei, F.M. Kashkooli, CFD simulation of nanofluid forced convection inside a three-dimensional annulus by two-phase mixture approach: heat transfer and entropy generation analyses, Int. J. Mech. Sci., 146–147 (2018) 396–404.
- G.A. Lazarus, V. Nandigana, K.G. Senthil, M.L. Dhasan, Experimental study on forced convective heat transfer with low volume fraction of CuO/water nanofluid, Energies 2 (2009) 97–119.
- R.-H. Chen, T.X. Phuoc, D. Martello, Effects of nanoparticles on nanofluid droplet evaporation, Int. J. Heat Mass Transfer, 53 (2010) 3677–3682.
- S. Siddiqa, N. Begum, M.A. Hossain, R.S.R. Gorla, A.A.A.A. Al-Rashed, Two-phase natural convection dusty nanofluid flow, Int. J. Heat Mass Transfer, 118 (2018) 66–74.
- M.A. Sheremet, D.S. Cimpean, I. Pop, Free convection in a partially heated wavy porous cavity filled with a nanofluid under the effects of Brownian diffusion and thermophoresis, Appl. Therm. Eng., 113 (2017) 413–418.
- A. Askounis, K. Sefiane, V. Koutsos, M.E.R. Shanahan, The effect of evaporation kinetics on nanoparticle structuring within contact line deposits of volatile drops, Colloids Surf., A, 441 (2014) 855–866.
- L. Perrin, A. Pajor-Swierzy, S. Magdassi, A. Kamyshny, F. Ortega, R.G. Rubio, Evaporation of nanosuspensions on substrates with different hydrophobicity, ACS Appl. Mater. Interfaces, 10 (2018) 3082–3093.
- W.-M. Yan, Effects of film evaporation on laminar mixed convection heat and mass transfer in a vertical channel, Int. J. Heat Mass Transfer, 12 (1992) 3419–3429.
- X.G. Huang, Y.H. Yang, P. Hu, Experimental study of falling film evaporation in large scale rectangular channel, Ann. Nucl. Energy, 76 (2015) 237–242.
- H. Wei, T. Davood, L. Amin, P. Farzad, K. Arash, A. Masoud, Effect of twisted-tape inserts and nanofluid on flow field and heat transfer characteristics in a tube, Int. Commun. Heat Mass Transfer, 110 (2020) 104440, doi: 10.1016/j.icheatmasstransfer.2019.104440.
- A. Nasr, A.A. Alzahrani, Liquid nanofilms’ evaporation inside a heat exchanger by mixed convection, Coatings, 12 (2022) 1564, doi: 10.3390/coatings12101564.
- M. Najim, M. Feddaoui, A.N. Alla, A. Charef, Computational study of evaporating nanofluids film along a vertical channel by the two-phase model, Int. J. Mech. Sci., 151 (2019) 858–867.
- A. Nasr, A.S. Al-Ghamdi, Liquid nanofilms’ condensation inside a heat exchanger by mixed convection, Appl. Sci., 12 (2022) 11190, doi: 10.3390/app122111190.
- W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanopart. Res., 5 (2003) 167–171.
- H.W. Chiam, W.H. Azmi, N.A. Usri, R. Mamat, N.M. Adam,
Thermal conductivity and viscosity of Al
_{2}O_{3}nanofluids for different based ratio of water and ethylene glycol mixture, Exp. Therm. Fluid Sci., 81 (2017) 420–429. - Dr. Neeraj Chavda, J.R. Patel, H.H. Patel, A.P. Parmar, Effect of nanofluid on heat transfer characteristics of double pipe heat exchanger: Part: I: effect of aluminum oxide nanofluid, Int. J. Res. Eng. Technol., 3 (2014) 42–52.
- J. Albadr, S. Tayal, M. Alasadi, Heat transfer through heat
exchanger using Al
_{2}O_{3}nanofluid at different concentrations, Case Stud. Therm. Eng., 1 (2013) 38–44. - M. Molana, A comprehensive review on the nanofluids application in the tubular heat exchangers, Am. J. Heat Mass Transfer, 3 (2016) 352–381.
- Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43 (2000) 3701–3707.
- S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79 (2001) 2252–2254.
- S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125 (2003) 567–574.
- P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, 45 (2002) 855–863.
- X.Q. Wang, A.S. Mujumdar, A review on nanofluids—part I: theoretical and numerical investigations, Braz. J. Chem. Eng., 24 (2007) 613–630.
- S.U.S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, D.A. Siginer, H.P. Wang, Eds., Developments and Applications of Non-Newtonian Flows, ASME, New York, Vol. 66, 1995, pp. 99–105.
- J.W. Palen, Q. Wang, J.C. Chen, Falling film evaporation of binary mixtures, AlChE J., 40 (1994) 207–214.
- H.C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20 (1952) 571, doi: 10.1063/1.1700493.
- J.C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 1, Clarendon Press, New York, NY, USA, 1881.
- A. Altaweel, Synthesis of Copper Oxide Nanostructures by Pressure Microwave Post-Discharge Microwave Atmospheric, Ph.D. Thesis, University of Lorraine, 2014.
- A.A. Ali Cherif, A. Daif, Numerical study of heat and mass transfer between two vertical flat plates in the presence of a binary liquid film flowing on one of the heated plates, Int. J. Heat Mass Transfer, 42 (1999) 2399–2418.