1. Y. Cheng, K. Tian, P. Xie, X.H. Ren, Y. Li, Y.Y. Kou, K.M. Chon, M.H. Hwang, M.H. Ko, Insights into the minimization of excess sludge production in micro-aerobic reactors coupled with a membrane bioreactor: characteristics of extracellular polymeric substances, Chemosphere, 292 (2022) 133434, doi: 10.1016/j.chemosphere.2021.133434.
  2. J. Zhang, Y. Tian, J. Zhang, Release of phosphorus from sewage sludge during ozonation and removal by magnesium ammonium phosphate, Environ. Sci. Pollut. Res., 24 (2017) 23794–23802.
  3. Z. Zhou, Y.Y. Sun, L. Fu, Y. Zuo, Y.J. Shao, L.H. Wang, C.T. Zhou, Y. An, Unraveling roles of the intermediate settler in a microaerobic hydrolysis sludge in-situ reduction process, Bioresour. Technol., 384 (2023) 129228, doi: 10.1016/j.biortech.2023.129228.
  4. C. Cheng, J.J. Geng, Z. Zhou, Q.M. Yu, R.W. Gao, Y.H. Shi, L.Y. Wang, H.Q. Ren, A novel anoxic/aerobic process coupled with micro-aerobic/anaerobic side-stream reactor filled with packing carriers for in-situ sludge reduction, J. Cleaner Prod., 311 (2021) 127192, doi: 10.1016/j.jclepro.2021.127192.
  5. C. Cheng, J.J. Geng, H.D. Hu, Y.H. Shi, R.W. Gao, X. Wang, H.Q. Ren, In-situ sludge reduction performance and mechanism in an anoxic/aerobic process coupled with alternating aerobic/anaerobic side-stream reactor, Sci. Total Environ., 777 (2021) 145856, doi: 10.1016/j.scitotenv.2021.145856.
  6. A. Iqbal, X.M. Liu, G.H. Chen, Municipal solid waste: review of best practices in application of life cycle assessment and sustainable management techniques, Sci. Total Environ., 729 (2020) 138622, doi: 10.1016/j.scitotenv.2020.138622.
  7. Y. Liang, D.H. Xu, P. Feng, B.T. Hao, Y. Guo, S.Z. Wang, J.J. Klemes, Municipal sewage sludge incineration and its air pollution control, J. Cleaner Prod., 295 (2021) 126456, doi: 10.1016/j.jclepro.2021.126456.
  8. A. Hanc, I. Komorowicz, K. Sek, D. Baralkiewicz, Test of the relationships between the content of heavy metals in sewage sludge and source of their pollution by chemometric methods, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 44 (2009) 1441–1448.
  9. Y. Liu, J.H. Tay, Strategy for minimization of excess sludge production from the activated sludge process, Biotechnol. Adv., 19 (2001) 97–107.
  10. M. Boehler, H. Siegrist, Potential of activated sludge disintegration, Water Sci. Technol., 53 (2006) 207–216.
  11. H.L. Li, Q.L. Zhang, M. Zeng, J.G. Cao, Q.Y. Zhao, L.L. Hao, Insights into gas flow behavior in venturi aerator by CFD-PBM model and verification of its efficiency in sludge reduction through O3 aeration, J. Water Process Eng., 54 (2023) 103960, doi: 10.1016/j.jwpe.2023.103960.
  12. Z.Y. Wang, T. Liu, H.R. Duan, Y.R. Song, X. Lu, S.H. Hu, Z.G. Yuan, D. Batstone, M. Zheng, Post-treatment options for anaerobically digested sludge: current status and future prospect, Water Res., 205 (2021) 117665, doi: 10.1016/j.watres.2021.117665.
  13. S.S. Yang, W.Q. Guo, G.L. Cao, H.S. Zheng, N.Q. Ren, Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment, Bioresour. Technol., 124 (2012) 347–354.
  14. E. Paul, H. Debellefontaine, Reduction of excess sludge produced by biological treatment processes: effect of ozonation on biomass and on sludge, Ozone Sci. Eng., 29 (2007) 415–427.
  15. J. Jiang, Z. Zhou, L.Y. Jiang, Y. Zheng, X.D. Zhao, G. Chen, M.Y. Wang, J. Huang, Y. An, Z.C. Wu, Bacterial and microfauna mechanisms for sludge reduction in carrier-enhanced anaerobic side-stream reactors revealed by metagenomic sequencing analysis, Environ. Sci. Technol., 55 (2021) 6257–6269.
  16. M. Mayhew, T. Stephenson, Biomass yield reduction: is biochemical manipulation possible without affecting activated sludge process efficiency?, Water Sci. Technol., 38 (1998) 137–144.
  17. X.F. Yang, M.L. Xie, Y. Liu, Metabolic uncouplers reduce excess sludge production in an activated sludge process, Process Biochem., 38 (2003) 1373–1377.
  18. X.F. Yang, X.P. Xu, X.Y. Wei, J.C. Li, J. Wan, Assessment of the sludge reduction of the metabolic uncoupler 3,3’,4’,5-tetrachlorosalicylanilide (TCS) in activated sludge culture, Int. J. Environ. Res. Public Health, 16 (2019) 1686, doi: 10.3390/ijerph16101686.
  19. E. Ferrer-Polonio, J. Fernandez-Navarro, J.L. Alonso-Molina, A. Bes-Pia, I. Amoros, J.A. Mendoza-Roca, Changes in the process performance and microbial community by addition of the metabolic uncoupler
    3,3’,4’,5-tetrachlorosalicylanilide in sequencing batch reactors, Sci. Total Environ., 694 (2019) 133726, doi: 10.1016/j.scitotenv.2019.133726.
  20. Y. Li, A.M. Li, J. Xu, B. Liu, L.C. Fu, W.W. Li, H.Q. Yu, SMP production by activated sludge in the presence of a metabolic uncoupler, 3,3’,4’,5-tetrachlorosalicylanilide (TCS), Appl. Microbiol. Biotechnol., 95 (2012) 1313–1321.
  21. F. Fang, S.N. Wang, K.Y. Li, J.Y. Dong, R.Z. Xu, L.L. Zhang, W.M. Xie, J.S. Cao, Formation of microbial products by activated sludge in the presence of a metabolic uncoupler o-chlorophenol in long-term operated sequencing batch reactors, J. Hazard. Mater., 384 (2020) 121311, doi: doi: 10.1016/j.jhazmat.2019.121311.
  22. S.N. Wang, F. Fang, K.Y. Li, Y.R. Yue, R.Z. Xu, J.Y. Luo, B.J. Ni, J.S. Cao, Sludge reduction and microbial community evolution of activated sludge induced by metabolic uncoupler o-chlorophenol in long-term anaerobic-oxic process, Environ. Manage., 316 (2022) 115230, doi: doi: 10.1016/j.jenvman.2022.115230.
  23. X.C. Feng, Study on Characteristics of Complex Uncoupling Agents for Sludge Process Reduction and Their Effects on Treatment Efficiency, Harbin Institute of Technology, 2013 (in Chinese).
  24. Z.K. Ma, Y. Tian, H.F. Cheng, Sludge reduction under the synergistic effect of copper ions and uncoupling agents, Environ. Sci., (2007) 1697–1702 (in Chinese).
  25. E.W. Low, H.A. Chase, M.G. Milner, T.P. Curtis, Uncoupling of metabolism to reduce biomass production in the activated sludge process, Water Res., 34 (2000) 3204–3212.
  26. Z. He, H.Y. Wang, H.H. Tian, L. Wang, Y.X. Zhou, Research progress in sludge reduction water treatment technology, China Water Supply Drain., 25 (2009) 1–7 (in Chinese).
  27. P. Chudoba, B. Capdeville, J. Chudoba, Explanation of biological meaning of the S0/X0 ratio in batch cultivation, Water Sci. Technol., 26 (1992) 743–751.
  28. G.U. Semblante, F.I. Hai, H.H. Ngo, W.S. Guo, S.J. You, W.E. Price, L.D. Nghiem, Sludge cycling between aerobic, anoxic and anaerobic regimes to reduce sludge production during wastewater treatment: performance, mechanisms, and implications, Bioresour. Technol., 155 (2014) 395–409.
  29. C.L. Martins, V.F. Velho, B.S. Magnus, J.A. Xavier, L.B. Guimarães, W.R. Leite, R.H.R. Costa, Assessment of sludge reduction and microbial dynamics in an OSA process with short anaerobic retention time, Environ. Technol. Innovation, 19 (2020) 101025, doi: 10.1016/j.eti.2020.101025.
  30. R. Vitanza, A. Cortesi, M.E. De Arana-Sarabia, V. Gallo, I.A. Vasiliadou, Oxic settling anaerobic (OSA) process for excess sludge reduction: 16 months of management of a pilot plant fed with real wastewater, J. Water Process Eng., 32 (2019) 100902, doi: 10.1016/j.jwpe.2019.100902.
  31. O. Demir, A. Filibeli, The investigation of the sludge reduction efficiency and mechanisms in oxic–settling–anaerobic (OSA) process, Water Sci. Technol., 73 (2016) 2311–2323.
  32. F.X. Ye, Y. Li, Oxic-settling-anoxic (OSA) process combined with 3,3’,4’,5-tetrachlorosalicylanilide (TCS) to reduce excess sludge production in the activated sludge system, Biochem. Eng. J., 49 (2010) 229–234.
  33. F.X. Ye, Y. Li, Uncoupled metabolism stimulated by chemical uncoupler and oxic-settling-anaerobic combined process to reduce excess sludge production, Appl. Biochem. Biotechnol., 127 (2005) 187–200.
  34. G. Saini, Technical comments on “Oxic-settling-anoxic (OSA) process combined with 3,3',4',5-tetrachlorosalicylanilide (TCS) to reduce excess sludge production in the activated sludge system” by Fenxia Ye and Ying Li, Biochem. Eng. J., 50 (2010) 150–151.
  35. J.S. Guo, F. Fang, P. Yan, Y.P. Chen, Sludge reduction based on microbial metabolism for sustainable wastewater treatment, Bioresour. Technol., 297 (2020) 122506, doi: 10.1016/j.biortech.2019.122506.
  36. B.X. Zhao, L.J.H. Huang, W.F. Huang, Y.J. Liu, R.H. Li, Study on mechanism of excess sludge reduction in MBR technology, Membr. Sci. Technol., 39 (2019) 73–80+87 (in Chinese).
  37. B.J. Liu, H.J. Fan, L. Feng, L.Q. Zhang, Study on sludge reduction effect based on biological predation in membrane bioreactor process, Environ. Pollut. Prev., 34 (2012) 30–33+39 (in Chinese).
  38. I.T. Yeom, K.R. Lee, Y.G. Choi, H.S. Kim, J.H. Kwon, U.J. Lee, Y.H. Lee, A pilot study on accelerated sludge degradation by a high-concentration membrane bioreactor coupled with sludge pretreatment, Water Sci. Technol., 52 (2005) 201–210.
  39. Z. Wang, L. Wang, B.Z. Wang, Y.F. Jiang, S. Liu, Bench-scale study on zero excess activated sludge production process coupled with ozonation unit in membrane bioreactor, J. Environ. Sci. Health., Part A, 43 (2008) 1325–1332.
  40. Y. Zheng, C. Cheng, Z. Zhou, H. Pang, L.Y Chen, L.M. Jiang, Insight into the roles of packing carriers and ultrasonication in anaerobic side-stream reactor coupled membrane bioreactors: sludge reduction performance and mechanism, Water Res., 155 (2019) 310–319.
  41. C. Cheng, Z. Zhou, T.H. Niu, Y. An, X.L. Shen, W. Pan, Z.H. Chen, J. Liu, Effects of side-stream ratio on sludge reduction and microbial structures of anaerobic side-stream reactor coupled membrane bioreactors, Bioresour. Technol., 234 (2017) 380–388.
  42. X.C. Feng, W.Q. Guo, H.S. Zheng, S.S. Yang, J.S. Du, Q.L. Wu, H.C. Lou, X. Zhou, W.B. Jin, N.Q. Ren, Inhibition of biofouling in membrane bioreactor by metabolic uncoupler based on controlling microorganisms accumulation and quorum sensing signals secretion, Chemosphere, 245 (2020) 125363, doi: 10.1016/j.chemosphere.2019.125363.
  43. Y.J. Shao, Z. Zhou, J. Jiang, L.M. Jiang, J.P. Huang, Y. Zuo, Y.Q. Ren, X.D. Zhao, Membrane fouling in anoxic/oxic membrane reactors coupled with carrier-enhanced anaerobic side-stream reactor: effects of anaerobic hydraulic retention time and mechanism insights, J. Membr. Sci., 637 (2021) 119667, doi: 10.1016/j.memsci.2021.119657.
  44. Y. Zuo, Y.J. Shao, L.H. Wang, Y.Y. Sun, Y. An, L.M. Jiang, N. Yu, R.J. Hao, C.T. Zhou, J. Tao, Z. Zhou, Simultaneous sludge minimization and membrane fouling mitigation in membrane bioreactors by using a microaerobic - settling pretreatment module, J. Environ. Manage., 328 (2023) 116977, doi: 10.1016/j.jenvman.2022.116977.
  45. W.Q. Guo, S.S. Yang, W.S. Xiang, X.J. Wang, N.Q. Ren, Minimization of excess sludge production by in-situ activated sludge treatment processes — a comprehensive review, Biotechnol. Adv., 31 (2013) 1386–1396.
  46. Q. Yang, K. Luo, X.M. Li, D.B. Wang, W. Zheng, G.M. Zeng, J.J. Liu, Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes, Bioresour. Technol., 101 (2010) 2924–2930.
  47. J. Wawrzynczyk, M. Recktenwald, O. Norrlow, E.S. Dey, The function of cation-binding agents in the enzymatic treatment of municipal sludge, Water Res., 42 (2008) 1555–1562.
  48. J. Li, Z. Zhu, G.Z. Zhu, D.T. Xie, C.F. Wei, Z.S. Pang, Study on reducing excess sludge production by using MCMP microbial preparation, J. Environ. Eng., (2007) 92–95 (in Chinese).
  49. M. Wang, L.A. Wang, L. Bao, Z. Zhu, Research on multifunctional microbial agents for sludge reduction, China Water Supply Drain., 23 (2007) 16–19 (in Chinese).
  50. B.L. Wu, Z.M. Huang, X. Wang, L. Qian, In-situ sludge reduction by EM bacteria and its impact on sludge yield, Ind. Saf. Environ. Prot., 42 (2016) 99–102 (in Chinese).
  51. Y. Song, Z. Shi, Evaluation of sludge reduction in an activated sludge process using lysozymes, Fresenius Environ. Bull., 25 (2016) 1988–1996.
  52. R.Y. Bai, K. Chen, W.J. Zhang, Study on the kinetic mechanism of activated sludge dissolution by complex enzyme treatment, J. Environ. Eng., 10 (2016) 5840–5846 (in Chinese).
  53. X. Zou, J.G. He, P.F. Zhang, X.L. Pan, Y.J. Zhong, J. Zhang, X.W. Wu, B.Q. Li, X. Tang, X.N. Xiao, H.L. Pang, Insights into carbon recovery from excess sludge through enzymecatalyzing hydrolysis strategy: environmental benefits and carbon-emission reduction, Bioresour. Technol., 351 (2022) 127006, doi: 10.1016/j.biortech.2022.127006.
  54. S. Kavitha, S.A. Kumar, K.N. Yogalakshmi, S. Kaliappan, J.R. Banu, Effect of enzyme secreting bacterial pretreatment on enhancement of aerobic digestion potential of waste activated sludge interceded through EDTA, Bioresour. Technol., 150 (2013) 210–219.
  55. M.T. Nguyen, N.H.M. Yasin, T. Miyazaki, T. Maeda, Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge, Chemosphere, 117 (2014) 552–558.
  56. S. Saby, M. Djafer, G.H. Chen, Feasibility of using a chlorination step to reduce excess sludge in activated sludge process, Water Res., 36 (2002) 656–666.
  57. S. Tanaka, T. Kobayashi, K. Kamiyama, M.L.N. Signey Bildan, Effects of thermochemical pre-treatment on the anaerobic digestion of waste activated sludge, Water Sci. Technol., 36 (1997) 209–215.
  58. G.U. Semblante, F.I. Hai, D.D. Dionysiou, K. Fukushi, W.E. Price, L.D. Nghiem, Holistic sludge management through ozonation: a critical review, Environ. Manage., 185 (2017) 79–95.
  59. A. Chiavola, C. Salvati, S. Bongirolami, C. Di Marcantonio, M.R. Boni, Techno-economic evaluation of ozone-oxidation for sludge reduction at the full-scale. Comparison between the application to the return activated sludge (RAS) and the sludge digestion unit, J. Water Process Eng., 42 (2021) 102114, doi: 10.1016/j.jwpe.2021.102114.
  60. S. Cosgun, N. Semerci, Combined and individual applications of ozonation and microwave treatment for waste activated sludge solubilization and nutrient release, J. Environ. Manage., 241 (2019) 76–83.
  61. Z.M. Qiang, L. Wang, H.Y. Dong, J.H. Qu, Operation performance of an A/A/O process coupled with excess sludge ozonation and phosphorus recovery: a pilot-scale study, Chem. Eng. J., 268 (2015) 162–169.
  62. Y.X. Zhao, J. Yin, H.L. Yu, N. Han, F.J. Tian, Observations on ozone treatment of excess sludge, Water Sci. Technol., 56 (2007) 167–175.
  63. H. Yasui, M. Shibata, An innovative approach to reduce excess sludge production in the activated sludge process, Water Sci. Technol., 30 (1994) 11–20.
  64. L.B. Chu, S.T. Yan, X.H. Xing, X.L. Sun, B. Jurcik, Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production, Water Res., 43 (2009) 1811–1822.
  65. Z.M. Qiang, L. Wang, H.Y. Dong, J.H. Qu, Operation performance of an A/A/O process coupled with excess sludge ozonation and phosphorus recovery: a pilot-scale study, Chem. Eng. J., 268 (2015) 162–169.
  66. W. Saktaywin, H. Tsuno, H. Nagare, T. Soyama, J. Weerapakkaroon, Advanced sewage treatment process with excess sludge reduction and phosphorus recovery, Water Res., 39 (2005) 902–910.
  67. L.B. Chu, S.T. Yan, X.H. Xing, A.F. Yu, X.L. Sun, B. Jurcik, Enhanced sludge solubilization by microbubble ozonation, Chemosphere, 72 (2008) 205–212.
  68. K. Hashimoto, N. Kubota, T. Okuda, S. Nakai, W. Nishijima, H. Motoshige, Reduction of ozone dosage by using ozone in ultrafine bubbles to reduce sludge volume, Chemosphere, 274 (2021) 129922, doi: 10.1016/j.chemosphere.2021.129922.
  69. W. Li, N.J.W. Yu, Q. Liu, Y.R. Li, N.Q. Ren, D.F. Xing, Enhancement of the sludge disintegration and nutrients release by a treatment with potassium ferrate combined with an ultrasonic process, Sci. Total Environ., 635 (2018) 699–704.
  70. E. Zielewicz, M. Tytla, Effects of ultrasonic disintegration of excess sludge obtained in disintegrators of different construction, Environ. Technol., 36 (2015) 2210–2216.
  71. M. Zubrowska-Sudol, J. Podedworna, K. Sytek-Szmeichel, A. Bisak, P. Krawczyk, A. Garlicka, The effects of mechanical sludge disintegration to enhance fullscale anaerobic digestion of municipal sludge, Therm. Sci. Eng. Prog., 5 (2018) 289–295.
  72. C.X. Niu, Y. Pan, X.Q. Lu, S.S. Wang, Z.Y. Zhang, C.T. Zheng, Y.J. Tan, G.Y. Zhen, Y.C. Zhao, Y.Y. Li, Mesophilic anaerobic digestion of thermally hydrolyzed sludge in anaerobic membrane bioreactor: long-term performance, microbial community dynamics and membrane fouling mitigation, J. Membr. Sci., 612 (2020) 118264, doi: 10.1016/j.memsci.2020.118264.
  73. L.F. Wang, C. Qian, J.K. Jiang, X.D. Ye, H.Q. Yu, Response of extracellular polymeric substances to thermal treatment in sludge dewatering process, Environ. Pollut., 231 (2017) 1388–1392.
  74. P. Camacho, P. Ginestet, J.M. Audic, Understanding the mechanisms of thermal disintegrating treatment in the reduction of sludge production, Water Sci. Technol., 52 (2005) 235–245.
  75. J. Zhang, Y.L. Dong, Q.W. Wang, D.Y. Xu, L.Y. Lv, W.F. Gao, L. Sun, G.M. Zhang, Z.J. Ren, Effects of ultrasonic lysis frequency on sludge lysis-cryptic growth: sludge reduction, microbial community, and metabolism, Chem. Eng. J., 469 (2023) 144000, doi: 10.1016/j.cej.2023.144000.
  76. B.A. Madge, J.N. Jensen, Disinfection of wastewater using a 20-kHz ultrasound unit, Water Environ. Res., 74 (2002) 159–169.
  77. M. Zheng, Y.C. Liu, J. Xin, H. Zuo, C.W. Wang, W.M. Wu, Ultrasonic treatment enhanced ammonia-oxidizing bacterial (AOB) activity for nitritation process, Environ. Sci. Technol., 50 (2015) 864–871.
  78. J.L. Gao, Y. Liu, Y.X. Yan, J.F. Wan, F. Liu, Promotion of sludge process reduction using low-intensity ultrasonic treatment, J. Cleaner Prod., 325 (2021) 129289, doi: 10.1016/j.jclepro.2021.129289.
  79. S. Tahmasebian, S.M. Borghei, M. Torkaman, H.H. Goudarzi, Influence of ultrasonic cell disintegration on excess sludge reduction in a moving bed biofilm reactor (MBBR), J. Environ. Chem. Eng., 7 (2019) 102997, doi: 10.1016/j.jece.2019.102997.
  80. S. Parandoush, N. Mokhtarani, Reducing excess sludge volume in sequencing batch reactor by integrating ultrasonic waves and ozonation, J. Environ. Manage., 317 (2022) 115405, doi: 10.1016/j.jenvman.2022.115405.
  81. X.Q. Zhang, H.Y. Zeng, Q. Wang, J.M. Li, C.R. Ma, Sludge predation by aquatic worms: physicochemical characteristics of sewage sludge and implications for dewaterability, J. Cleaner Prod., 258 (2020) 120612, doi: 10.1016/j.jclepro.2020.120612.
  82. W. Ghyoot, W. Verstraete, Reduced sludge production in a two-stage membrane-assisted bioreactor, Water Res., 34 (2000) 205–215.
  83. L.P. Li, Y. Tian, J. Zhang, W. Zuo, H. Li, A.R. Li, D.P. Huang, J. Liu, Y.H. Liu, Z.M. Sun, Y.S. Liu, Insight into the roles of worm reactor on wastewater treatment and sludge reduction in anaerobic-anoxic-oxic membrane bioreactor (A2O-MBR): performance and mechanism, Chem. Eng. J., 330 (2017) 718–726.
  84. A. Khursheed, A.A. Kazmi, Retrospective of ecological approaches to excess sludge reduction, Water Res., 45 (2011) 4287–4310.
  85. Y.S. Wei, J.X. Liu, Sludge reduction with a novel combined worm-reactor, Hydrobiologia, 564 (2006) 213–222.
  86. Y. Tian, Z.P. Li, Y.B. Lu, Changes in characteristics of soluble microbial products and extracellular polymeric substances in membrane bioreactor coupled with worm reactor: relation to membrane fouling, Bioresour. Technol., 122 (2012) 62–69.
  87. J. Tamis, G. van Schouwenburg, R. Kleerebezem, M.C.M. van Loosdrecht, A full scale worm reactor for efficient sludge reduction by predation in a wastewater treatment plant, Water Res., 45 (2011) 5916–5924.
  88. Y.D. Zheng, M.Y. Xing, L.Z.Y. Cai, T. Xiao, Y.F. Lu, J.Z. Jiang, Interaction of earthworms-microbe facilitating biofilm dewaterability performance during wasted activated sludge reduction and stabilization, Sci. Total Environ., 581–582 (2017) 573–581.
  89. M.M. Emamjomeh, M. Tahergorabi, M. Farzadkia, E. Bazrafshan, A review of the use of earthworms and aquatic worms for reducing sludge produced: an innovative ecotechnology, Waste Biomass Valorization, 9 (2017) 1543–1557.
  90. T.L.G. Hendrickx, H. Temmink, H.J.H. Elissen, C.J.N. Buisman, Aquatic worms eating waste sludge in a continuous system, Bioresour. Technol., 100 (2019) 4642–4648.
  91. Y.S. Wei, Y.M. Wang, X.S. Guo, J.X. Liu, Sludge reduction potential of the activated sludge process by integrating an oligochaete reactor, J. Hazard. Mater., 163 (2009) 87–91.
  92. W.Q. Ding, X. Zhou, W.B. Jin, Z.C. Zhao, S.H. Gao, Y.D. Chen, W. Han, H. Liu, Q.L. Wang, A novel aquatic worm (Limnodrilus hoffmeisteri) conditioning method for enhancing sludge dewaterability by decreasing filamentous bacteria, Sci. Total Environ., 849 (2022) 157949, doi: 10.1016/j.scitotenv.2022.157949.
  93. N.M. Lee, T. Welander, Use of protozoa and metazoa for decreasing sludge production in aerobic wastewater treatment, Biotechnol. Lett., 18 (1996) 429–434.
  94. C.H. Ratsak, B.W. Koi, H.W. van Verseveld, Biomass reduction and mineralization increase due to the ciliate Tetrahymena pyriformis grazing on the bacterium Pseudomonas fluorescens, Water Sci. Technol., 29 (1994) 119–128.