1. M. Batool, Waqas-ud-Din Khan, Y. Hamid, M.A. Farooq, M.A. Naeem, F. Nadeem, Interaction of pristine and mineral engineered biochar with microbial community in attenuating the heavy metals toxicity: a review, Appl. Soil Ecol., 175 (2022) 104444, doi: 10.1016/j.apsoil.2022.104444.
  2. B. Silva, H. Figueiredo, C. Quintelas, I.C. Neves, T. Tavares, Zeolites as supports for the biorecovery of hexavalent and trivalent chromium, Microporous Mesoporous Mater., 116 (2008) 555–560.
  3. S. Chaturvedi, A. Khare, S.M.P. Khurana, Toxicity of Hexavalent Chromium and Its Microbial Detoxification Through Bioremediation, M.P. Shah, Ed., Removal of Emerging Contaminants Through Microbial Processes, Springer, Singapore, 2021, pp. 513–542.
  4. N. Tahri Joutey, W. Bahafid, H. Sayel, S. Ananou, N. El Ghachtouli, Hexavalent chromium removal by a novel Serratia proteamaculans isolated from the bank of Sebou River (Morocco), Environ. Sci. Pollut. Res., 21 (2013) 3060–3072.
  5. R. Jobby, P. Jha, A.K. Yadav, N. Desai, Biosorption and biotransformation of hexavalent chromium [Cr(VI)]:
    a comprehensive review, Chemosphere, 207 (2018) 255–266.
  6. P. Sharma, A.K. Pandey, S.H. Kim, S.P. Singh, P. Chaturvedi, S. Varjani, Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater, Environ. Technol. Innovation, 24 (2021) 101826, doi: 10.1016/j.eti.2021.101826.
  7. G. Bayramoğlu, G. Çelik, E. Yalçın, M. Yılmaz, M.Y. Arıca, Modification of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods: evaluation of their Cr6+ removal efficiencies from aqueous medium, J. Hazard. Mater., 119 (2005) 219–229.
  8. C. Quintelas, B. Fernandes, J. Castro, H. Figueiredo, T. Tavares, Biosorption of Cr(VI) by a Bacillus coagulans biofilm supported on granular activated carbon (GAC), Chem. Eng. J., 136 (2008) 195–203.
  9. C. Cervantes, J. Campos-García, S. Devars, F. Gutiérrez-Corona, H. Loza-Tavera, J.C. Torres-Guzmán,
    R. Moreno-Sánchez, Interactions of chromium with microorganisms and plants, FEMS Microbiol. Rev., 25 (2001) 335–347.
  10. M.D. Mullen, D.C. Wolf, F.G. Ferris, T.J. Beveridge, C.A. Flemming, G.W. Bailey, Bacterial sorption of heavy-metals, Appl. Environ. Microbiol., 55 (1989) 3143–3149.
  11. M.C. Sportelli, C. Kranz, B. Mizaikoff, N. Cioffi, Recent advances on the spectroscopic characterization of microbial biofilms: a critical review, Anal. Chim. Acta, 1195 (2022) 339433, doi: 10.1016/j.aca.2022.339433.
  12. A. Mitra, S. Mukhopadhyay, Biofilm mediated decontamination of pollutants from the environment, AIMS Bioeng., 3 (2016) 44–59.
  13. J.M. Sonawane, A.K. Rai, M. Sharma, M. Tripathi, R. Prasad, Microbial biofilms: recent advances and progress in environmental bioremediation, Sci. Total Environ., 824 (2022) 153843, doi: 10.1016/j.scitotenv.2022.153843.
  14. T. Siddharth, P. Sridhar, V. Vinila, R.D. Tyagi, Environmental applications of microbial extracellular polymeric substance (EPS): a review, J. Environ. Manage., 287 (2021) 112307, doi: 10.1016/j.jenvman.2021.112307.
  15. C. Quintelas, V.B. da Silva, B. Silva, H. Figueiredo, T. Tavares, Optimization of production of extracellular polymeric substances by Arthrobacter viscosus and their interaction with a 13X zeolite for the biosorption of Cr(VI), Environ. Technol., 32 (2011) 1541–1549.
  16. M. Asri, N. El Ghachtouli, S. Elabed, S. Ibnsouda Koraichi, A. Elabed, B. Silva, T. Tavares, Wicherhamomyces anomalus biofilm supported on wood husk for chromium wastewater treatment, J. Hazard. Mater., 359 (2018) 554–562.
  17. N. Mohd-Al-Faisal, W.H.A. Wan Harun, F. Abdul Razak, An in vitro study on the anti-adherence effect of Brucea javanica and Piper betle extracts towards oral Candida, Arch. Oral Biol., 58 (2013) 1335–1342.
  18. M. Asri, A. Elabed, N. El Ghachtouli, S. Ibnsouda Koraichi, W. Bahafid, S. Elabed, Theoretical and experimental adhesion of yeast strains with high chromium removal potential, Environ. Eng. Sci., 34 (2017) 693–702.
  19. S. Elabed, M. Mostakim, F. Berguadi, H. Latrache, A. Houari, F. Hamadi, S. Ibnsouda koraichi, Study of microbial adhesion on some wood species: theoretical prediction, Microbiology, 80 (2011) 43–49.
  20. E.A. Vogler, Structure and reactivity of water at biomaterial surfaces, Adv. Colloid Interface Sci., 74 (1998) 69–117.
  21. C.J. van Oss, Interfacial Forces in Aqueous Media, Dekker, New York, 1996.
  22. A.M. Gallardo-Moreno, M.L. González-Martín, C. Pérez-Giraldo, J.M. Bruque, A.C. Gómez-García, The measurement temperature: an important factor relating physicochemical and adhesive properties of yeast cells to biomaterials, J. Colloid Interface Sci., 271 (2004) 351–358.
  23. H.H.M. Rijnaarts, W. Norde, J. Lyklema, A.J.B. Zehnder, DLVO and steric contributions to bacterial deposition in media of different ionic strengths, Colloids Surf., B, 14 (1999) 179–195.
  24. P. Pattanapipitpaisal, N.L. Brown, L. Macaskie, Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site, Appl. Microbiol. Biotechnol., 57 (2001) 257–261.
  25. C. Quintelas, Z. Rocha, B. Silva, B. Fonseca, H. Figueiredo, and T. Tavares, Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin, Chem. Eng. J., 149 (2009) 319–324.
  26. J. Azeredo, R. Oliveira, A new method for precipitating bacterial exopolysaccharides, Biotechnol. Technol., 10 (1996) 341–344.
  27. A. Avellan, C. Levard, J. Rose, M. Auffan, M. Bertrand, L. Olivi, C. Santaella, W. Achouak, A. Masion, Influence of structural defects of Ge-imogolite nanotubes on their toxicity towards Pseudomonas brassicacearum, Environ. Sci. Nano, 3 (2016) 839–846.
  28. Y. Guo, R.M. Bustin, FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals, Int. J. Coal Geol., 37 (1998) 29–53.
  29. S. Benyoucef, D. Harrache, Microstructure characterization of scots pine “Pinus sylvestris” sawdust, J. Mater. Environ. Sci., 6 (2015) 765–772.
  30. M. Sain, S. Panthapulakkal, Bioprocess preparation of wheat straw fibers and their characterization, Ind. Crops Prod., 23 (2006) 1–8.
  31. A.K. Rana, R.K. Basak, B.C. Mitra, M. Lawther, A.N. Banerjee, Studies of acetylation of jute using simplified procedure and its characterization, J. Appl. Polym. Sci., 64 (1996) 1517–1523.
  32. K.K. Pandey, A.J. Pitman, FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi, Int. Biodeterior. Biodegrad., 52 (2003) 151–160.
  33. D. Chen, X. Hu, L. Shi, Q. Cui, H. Wang, H. Yao, Synthesis and characterization of zeolite X from lithium slag, Appl. Clay Sci., 59–60 (2012) 148–151.
  34. Y. Ma, C. Yan, A. Alshameri, X. Qiu, C. Zhou, Synthesis and characterization of 13X zeolite from low-grade natural kaolin, Adv. Powder Technol., 25 (2014) 495–499.
  35. L. Liu, R. Singh, G. Li, G. Xiao, P.A. Webley, Y. Zhai, Synthesis of hydrophobic zeolite X@SiO2 core-shell composites, Mater. Chem. Phys., 133 (2012) 1144–1151.
  36. B. Adnadjević, J. Jovanović, S. Gajinov, Effect of different physicochemical properties of hydrophobic zeolites on the pervaporation properties of PDMS-membranes, J. Membr. Sci., 136 (1997) 173–179.
  37. V. Ochoa-Herrera, R. Sierra-Alvarez, Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge, Chemosphere, 72 (2008) 1588–1593.
  38. P.M. Costanzo, R.F. Giese, C.J. van Oss, The Determination of Surface Tension Parameters of Powders by Thin Layer Wicking, R.A. Williams, N.C. de Jaeger, Eds., Advances in Measurement and Control of Colloidal Processes, Butterworth-Heinemann, San Diego, USA, 1991, pp. 223–232.
  39. C.J. van Oss, R.F. Giese, The hydrophilicity and hydrophobicity of clay minerals, Clays Clay Miner., 43 (1995) 474–477.
  40. P. Dutournié, A. Said, T.J. Daou, J. Bikaï, L. Limousy, Hydraulic performance modifications of a zeolite membrane after an alkaline treatment: contribution of polar and apolar surface tension components, Adv. Mater. Sci. Eng., 2015 (2015) 524259, doi: 10.1155/2015/524259.
  41. R. Van Houdt, C.W. Michiels, Biofilm formation and the food industry, a focus on the bacterial outer surface, J. Appl. Crystallogr., 109 (2010) 1117–1131.
  42. J.M. Lundén, M.K. Miettinen, T.J. Autio, H.J. Korkeala, Persistent Listeria monocytogenes strains show enhanced adherence to food contact surface after short contact times, J. Food Prot., 63 (2000) 1204–1207.
  43. R.A.N. Chmielewski, J.F. Frank, Biofilm Formation and Control in Food Processing Facilities, Compr. Rev. Food Sci. Food Saf., 2 (2003) 22–32.
  44. H. Gibson, J.H. Taylor, K.E. Hall, J.T. Holah, Effectiveness of cleaning techniques used in the food industry in terms of the removal of bacterial biofilms, J. Appl. Microbiol., 1995 (1999) 41–48.
  45. B. Joseph, S.K. Otta, I. Karunasagar, I. Karunasagar, Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers, Int. J. Food Microbiol., 64 (2001) 367–372.
  46. M.R. Beresford, P.W. Andrew, G. Shama, Listeria monocytogenes adheres to many materials found in food-processing environments, J. Appl. Microbiol., 90 (2001) 1000–1005.
  47. A.K. Meena, K. Kadirvelu, G.K. Mishraa, C. Rajagopal, P.N. Nagar, Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk, J. Hazard. Mater., 150 (2008) 619–625.
  48. B. Silva, H. Figueiredo, C. Quintelas, I.C. Neves, T. Tavares, Improved biosorption for Cr(VI) reduction and removal by Arthrobacter viscosus using zeolite, Int. Biodeterior. Biodegrad., 74 (2012) 116–123.
  49. C. Quintelas, B. Fonseca, B. Silva, H. Figueiredo, T. Tavares, Treatment of chromium(VI) solutions in a pilot-scale bioreactor through a biofilm of Arthrobacter viscosus supported on GAC, Bioresour. Technol., 100 (2009) 220–226.
  50. Z. Lewandowski, J.P. Boltz, Biofilms in Water and Wastewater Treatment, P. Wilderer, Ed., Treatise on Water Science, Academic Press, Oxford, 2011, pp. 529–567.
  51. F. Costa, B. Silva, T. Tavares, 6 - Biofilm bioprocesses, C. Larroche, M.A. Sanromán, G. Du, A. Pandey, Eds., Current Developments in Biotechnology and Bioengineering: Bioprocesses, Bioreactors and Controls, Elsevier, Amsterdam, Netherlands, 2017, pp. 143–167.
  52. J.P. Bassin, M. Dezotti, Moving Bed Biofilm Reactor (MBBR), in: Advanced Biological Processes for Wastewater Treatment, Springer, Cham, 2018, pp. 37–74.
  53. C. Quintelas, B. Fernandes, J. Castro, H. Figueiredo, T. Tavares, Biosorption of Cr(VI) by a Bacillus coagulans biofilm supported on granular activated carbon (GAC), Chem. Eng. J., 136 (2008) 195–203.
  54. H. Liu, H.H.P. Fang, Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data, Biotechnol. Bioeng., 80 (2002) 806–811.
  55. D.C.K. Ko, J.F. Porter, G. Mckay, Optimised correlations for the fixed-bed adsorption of metal ions on bone char, Chem. Eng. Sci., 55 (2000) 5819–5829.
  56. T.V.N. Padmesh, K. Vijayaraghavan, G. Sekaran, M. Velan, Biosorption of Acid Blue 15 using fresh water macroalga Azolla filiculoides: batch and column studies, Dyes Pigm., 71 (2006) 77–82.
  57. E. Malkoc, Y. Nuhoglu, Investigations of nickel(II) removal from aqueous solutions using tea factory waste, J. Hazard. Mater., 127 (2005) 120–128.
  58. M. Badia-Fabregat, D. Lucas, T. Tuomivirta, H. Fritze, T. Pennanen, S. Rodríguez-Mozaz, D. Barceló, G. Caminal, T. Vicent, Study of the effect of the bacterial and fungal communities present in real wastewater effluents on the performance of fungal treatments, Sci. Total Environ., 579 (2017) 366–377.
  59. R. De Philippis, G. Colica, E. Micheletti, Exopolysaccharide producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process, Appl. Microbiol. Biotechnol., 92 (2011) 697–708.
  60. E. Blanchet, E. Desmond, B. Erable, A. Bridier, T. Bouchez, A. Bergel, Comparison of synthetic medium and wastewater used as dilution medium to design scalable microbial anodes: application to food waste treatment, Bioresour. Technol., 185 (2015) 106–115.
  61. F. Bourgeois, F. Monette, D.G. Cyr, Operational modifications for the development of nitrifying bacteria in a large-scale biological aerated filter and its impact on wastewater treatment, Water Sci. Technol., 78 (2018) 1–11.
  62. M.E. Casas, K. Bester, Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?, Sci. Total Environ., 506–507 (2015) 315–322.
  63. C. Quintelas, B. Fernandes, J. Castro, H. Figueiredo, T. Tavares, Biosorption of Cr(VI) by three different bacterial species supported on granular activated carbon – a comparative study, J. Hazard. Mater., 153 (2008) 799–809.
  64. K. Weinberger, Process and Facility for Treating Ammonium-Containing Wastewater, U.S. Patent No. 9,969,637, U.S. Patent and Trademark Office, Washington, D.C., 2018.
  65. J. Wang, C. Chen, Biosorption of heavy metals by Saccharomyces cerevisiae: a review, Biotechnol. Adv., 24 (2006) 427–451.
  66. P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res., 8 (2004) 501–551.
  67. I.E. Mejias Carpio, G. Machado-Santelli, S. Kazumi Sakata, S.S. Ferreira Filho, D.F. Rodrigues, Copper removal using a heavy-metal resistant microbial consortium in a fixed-bed reactor, Water Res., 62 (2014) 156–166.
  68. R. Pan, L. Cao, R. Zhang, Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19, J. Hazard. Mater., 171 (2009) 761–766.
  69. S. Sharma, A. Adholeya, Detoxification and accumulation of chromium from tannery effluent and spent chrome effluent by Paecilomyces lilacinus fungi, Int. Biodeterior. Biodegrad., 65 (2011) 309–317.
  70. H. Salehizadeh, S.A. Shojaosadati, Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus, Water Res., 37 (2003) 4231–4235.
  71. B. Jha, D.N. Singh, Basics of Zeolites, In: Fly Ash Zeolites, Advanced Structured Materials, Vol. 78, Springer, Singapore, 2016, pp. 5–31.