References

  1. Y.Z. Kuang, X.Y. Guo, J.R. Hu, S. Li, R.J. Zhang, Q. Gao, X. Yang, Q. Chen, W.L. Sun, Occurrence and risks of antibiotics in an Urban River in Northeastern Tibetan Plateau, Sci. Rep., 10 (2020) 20054, doi: 10.1038/s41598-020-77152-5.
  2. J.L. Wang, S.Z. Wang, Microbial degradation of sulfamethoxazole in the environment, Appl. Microbiol. Biotechnol., 102 (2018) 3573–3582.
  3. H.X. Wang, N. Wang, B. Wang, Q. Zhao, H. Fang, C.W. Fu, C.X. Tang, F. Jiang, Y. Zhou, Y. Chen, Q.W. Jiang, Antibiotics in drinking water in Shanghai and their contribution to antibiotic exposure of school children, Environ. Sci. Technol., 50 (2016) 2692–2699.
  4. R. Daghrir, P. Drogui, Tetracycline antibiotics in the environment: a review, Environ. Chem. Lett., 11 (2013) 209–227.
  5. H.P. Gao, Y.G. Wang, M.A. Afolabi, D.Q. Xiao, Y.S. Chen, Incorporation of cellulose nanocrystals into graphene oxide membranes for efficient antibiotic removal at high nutrient recovery, ACS Appl. Mater. Interfaces, 13 (2021) 14102–14111.
  6. X.H. Huang, J. Tian, Y.W. Li, X.L. Yin, W. Wu, Preparation of a three-dimensional porous graphene oxide–kaolinite–poly(vinyl alcohol) composite for efficient adsorption and removal of ciprofloxacin, Langmuir, 36 (2020) 10895–10904.
  7. A. Jaén-Gil, M.J. Farré, A. Sànchez-Melsió, A. Serra-Compte, D. Barceló, S. Rodríguez-Mozaz, Effect-based identification of hazardous antibiotic transformation products after water chlorination, Environ. Sci. Technol., 54 (2020) 9062–9073.
  8. K. Fischer, M. Majewsky, Co-metabolic degradation of organic wastewater micropollutants by activated sludge and sludgeinherent microorganisms, Appl. Microbiol. Biotechnol., 98 (2014) 6583–6597.
  9. N. Talreja, M. Ashfaq, D. Chauhan, A.C. Mera, C.A. Rodríguez, Strategic doping approach of the Fe–BiOI microstructure: an improved photodegradation efficiency of tetracycline, ACS Omega, 6 (2021) 1575–1583.
  10. R. Dhanabal, S. Velmathi, A.C. Bose, Fabrication of RuO2-Ag3PO4 heterostructure nanocomposites: investigations of band alignment on the enhanced visible light photocatalytic activity, J. Hazard. Mater., 344 (2018) 865–874.
  11. Y.K. Wang, S. Zhou, G.Q. Zhao, C.F. Li, L.K. Liu, F.P. Jiao, Fabrication of SnWO4/ZnFe‑layered double hydroxide composites with enhanced photocatalytic degradation of methyl orange, J. Mater. Sci.: Mater. Electron., 31 (2020) 12269–12281.
  12. R.Q. Gang, L. Xu, Y. Xia, L.B. Zhang, S.X. Wang, R. Li, Facile one-step production of 2D/2D ZnO/rGO nanocomposites under microwave irradiation for photocatalytic removal of tetracycline, ACS Omega, 6 (2021) 3831–3839.
  13. X.F. Tan, S.B. Liu, Y.G. Liu, Y.L. Gu, G.M. Zeng, X.X. Cai, Z.L. Yan, C.P. Yang, X.J. Hu, B. Chen, One-pot synthesis of carbon supported calcined-Mg/Al layered double hydroxides for antibiotic removal by slow pyrolysis of biomass waste, Sci. Rep., 6 (2016) 39691, doi: 10.1038/srep39691.
  14. Y.H. Zheng, C.Q. Chen, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, J.F. Zhu, Y.J. Zhu, Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property, Inorg. Chem., 46 (2007) 6675–6682.
  15. M. Bouslama, M.C. Amamra, Z. Jia, M. Ben Amar, K. Chhor, O. Brinza, M. Abderrabba, J.L. Vignes, A. Kanaev, Nanoparticulate TiO2−Al2O3 photocatalytic media: effect of particle size and polymorphism on photocatalytic activity, ACS Catal., 2 (2012) 1884−1892.
  16. P. Li, H.C. Zeng, Immobilization of metal-organic framework nanocrystals for advanced design of supported nanocatalysts, ACS Appl. Mater. Interfaces, 8 (2016) 29551–29564.
  17. G.Q. Zhao, L.K. Liu, C.F. Li, J.G. Yu, F.P. Jiao, Synthesis, characterization and enhanced visible light photocatalytic activity of Bi2WO6/Ni-Al layered double hydroxide composites, J. Mater. Sci.: Mater. Electron., 29 (2018) 14008–14021.
  18. G.L. Fan, F. Li, D.G. Evans, X. Duan, Catalytic applications of layered double hydroxides: recent advances and perspectives, Chem. Soc. Rev., 43 (2014) 7040–7066.
  19. C.Y. Yang, T.H. Zhu, J. Wang, S.H. Chen, W.Y. Li, Synthesis and characterization offlurbiprofen axetil-loaded electrospun MgAl-LDHs/poly(lacticco-glycolic acid) composite nanofibers, RSC Adv., 5 (2015) 69423–69429.
  20. C.P. Chen, J.C. Buffet, D. O’Hare, Surface modification of aqueous miscible organic layered double hydroxides (AMO-LDHs), Dalton Trans., 49 (2020) 8498–8503.
  21. S. Iguchi, Y. Hasegawa, K. Teramura, S. Kidera, S. Kikkawa, S. Hosokawa, H. Asakura, T. Tanaka, Drastic improvement in the photocatalytic activity of Ga2O3 modified with Mg-Al layered double hydroxide for the conversion of CO2 in water, Sustainable Energy Fuels, 1 (2017) 1740–1747.
  22. T.T. Kong, J. Huang, X.G. Jia, W.Z. Wang, Y. Zhou, Synthesis and optimization of Ti/Li/Al ternary layered double hydroxides for efficient photocatalytic reduction of CO2 to CH4, Sci. Rep., 9 (2019) 5659, doi: 10.1038/s41598-019-41979-4.
  23. K.L. Huang, C.H. Li, H.Z. Li, G.M. Ren, L. Wang, W.T. Wang, X.C. Meng, Photocatalytic applications of
    two-dimensional Ti3C2 MXenes: a review, ACS Appl. Nano Mater., 3 (2020) 9581–9603.
  24. L. Cheng, X. Li, H.W. Zhang, Q.J. Xiang, 2D transition metal MXene-based photocatalysts for solar fuel generation, J. Phys. Chem. Lett., 10 (2019) 3488–3494.
  25. P. Vols, S. Hilbert, B. Storr, N. Bette, A. Lissner, J. Seidel, F. Mertens, Methanation of CO2 and CO by
    (Ni, Mg, Al)-hydrotalcite-derived and related catalysts with varied magnesium and aluminum oxide contents, Ind. Eng. Chem. Res., 60 (2021) 5114–5123.
  26. N. Blanch-Raga, A.E. Palomares, J. Martínez-Triguero, G. Fetter, P. Bosch, Cu mixed oxides based on hydrotalcite-like compounds for the oxidation of trichloroethylene, Ind. Eng. Chem. Res., 52 (2013) 15772–15779.
  27. H. Mitta, P.K. Seelam, K.V.R. Chary, S. Mutyala, R. Boddula, Inamuddin, A.M. Asiri, Efficient vapor-phase selective hydrogenolysis of bio-levulinic acid to γ-valerolactone using Cu supported on hydrotalcite catalysts, Global Challenges, 2 (2018) 1800028, doi: 10.1002/gch2.201800028.
  28. N. Zhang, C. Chen, Z.W. Mei, X.H. Liu, X.L. Qu, Y.X. Li, S.Q. Li, W.H. Qi, Y.J. Zhang, J.H. Ye, V.A.L. Roy, R.Z. Ma, Monoclinic tungsten oxide with {100} facet orientation and tuned electronic band structure for enhanced photocatalytic oxidations, ACS Appl. Mater. Interfaces, 8 (2016) 10367–10374.
  29. J.D. Xiao, Y.B. Xie, F. Nawaz, Y.X. Wang, P.H. Du, H.B. Cao, Dramatic coupling of visible light with ozone on honeycomblike porous g-C3N4 towards superior oxidation of water pollutants, Appl. Catal., B, 183 (2016) 417–425.
  30. Y.X. Yan, Q. Liu, J. Wang, J. Wei, Z. Gao, T. Mann, Z.S. Li, Y. He, M.L. Zhang, L.H. Liu, Single-step synthesis of layered double hydroxides ultrathin nanosheets, J. Colloid Interface Sci., 371 (2012) 15–19.
  31. X.Y. Li, J.J. Xue, S.S. Mal, P. Xu, C.J. Huang, M.X. Wang, Synthesis of MgAl LDH/acidified g-C3N4 heterojunction photocatalyst for improved tetracycline hydrochloride degradation activity, NANO: Brief Rep. Rev., 14 (2019) 1950066.
  32. G. Zhang, D. Yang, E. Sacher, Structure and morphology of Co nanoparticles deposited onto highly oriented pyrolytic graphite, J. Phys. Chem. C, 111 (2007) 17200–17205.
  33. D.J. Liang, W.B. Yue, G.B. Sun, D. Zheng, K. Ooi, X.J. Yang, Synthesis of unilamellar MgAl-LDH nanosheets and stacking in aqueous solution, Langmuir, 31 (2015) 12464–12471.
  34. H. Shen, M. Wang, X. Zhang, D. Li, G. Liu, W. Shi, 2D/2D/3D architecture Z-scheme system for simultaneous H2 generation and antibiotic degradation, Fuel, 280 (2020) 118618, doi: 10.1016/j.fuel.2020.118618.
  35. H. Shen, G. Liu, X. Yan, J. Jiang, Y. Hong, M. Yan, B. Mao, D. Li, W. Fan, W. Shi, All-solid-state z-scheme system of RGO-Cu2O/Fe2O3 for simultaneous hydrogen production and tetracycline degradation, Mater. Today Energy, 5 (2017) 312–319.
  36. Y. Zhou, S. Feng, X. Duan, W. Wu, Z. Ye, X. Dai, Y. Wang, X. Cao, Stable self-assembly Cu2O/ZIF-8 heterojunction as efficient visible light responsive photocatalyst for tetracycline degradation and mechanism insight, J. Solid State Chem., 305 (2022) 122628, doi: 10.1016/j.jssc.2021.122628.
  37. J. Xiong, H.Y. Zeng, J.F. Peng, L.H. Wang, D.Y. Peng, F.Y. Liu, S. Xu, Z.L. Yang, Fabrication of Cu2O/ZnTi-LDH p-n heterostructure by grafting Cu2O nps onto the LDH host layers from Cu-doped ZnTi-LDH and insight into the photocatalytic mechanism, Composites, Part B, 250 (2023) 110447, doi: 10.1016/j.compositesb.2022.110447.
  38. Q. Ni, X. Ke, W. Qian, Z. Yan, J. Luan, W. Liu, Insight into tetracycline photocatalytic degradation mechanism in a wide pH range on BiOI/BiOBr: coupling DFT/QSAR simulations with experiments, Appl. Catal., B, 340 (2024) 123226, doi: 10.1016/j.apcatb.2023.123226.
  39. J. Zhang, Y. Zhao, K. Qi, S.-y. Liu, CuInS2 quantum-dotmodified g-C3N4 S-scheme heterojunction photocatalyst for hydrogen production and tetracycline degradation, J. Mater. Sci. Technol., 172 (2024) 145–155.
  40. X. Gao, J. Niu, Y. Wang, Y. Ji, Y. Zhang, Solar photocatalytic abatement of tetracycline over phosphate oxoanion decorated Bi2WO6/polyimide composites, J. Hazard. Mater., 403 (2021) 123860, doi: 10.1016/j.jhazmat.2020.123860.
  41. X. Zhu, W. Yuan, M. Lang, G. Zhen, X. Zhang, X. Lu, Novel methods of sewage sludge utilization for photocatalytic degradation of tetracycline-containing wastewater, Fuel, 252 (2019) 148–156.
  42. J.S. Valente, M.S. Cantu, J.G.H. Cortez, R. Montiel, X. Bokhimi, E. Lopez-Salinas, Preparation and characterization of sol–gel MgAl hydrotalcites with nanocapsular morphology, J. Phys. Chem. C, 111 (2007) 642–651.
  43. F.S. Li, L. Jin, J.B. Han, M. Wei, C.J. Li, Synthesis and controlled release properties of prednisone intercalated Mg-Al layered double hydroxide composite, Ind. Eng. Chem. Res., 48 (2009) 642–651.
  44. F. Hasanvandian, M. Moradi, S.A. Samani, B. Kakavandi, S.R. Setayesh, M. Noorisepehr, Effective promotion of g-C3N4 photocatalytic performance via surface oxygen vacancy and coupling with bismuth-based semiconductors towards antibiotics degradation, Chemosphere, 287 (2022) 132273, doi: 10.1016/j.chemosphere.2021.132273.
  45. M. Ahmadi, M. Moslemzadeh, A. Naderi, M.Z. Salmasi, M. Harati, R.R. Kalantary, B. Kakavandi, Intensified photodegradation of nitrobenzene using ZnO-anchored spinel cobalt ferrite: environmental application, mechanism, and degradation pathway, J. Water Process. Eng., 49 (2022) 103064, doi: 10.1016/j.jwpe.2022.103064.
  46. B. Zhang, R.T. Hu, D.J. Sun, T. Wu, Y.J. li, Fabrication of magnetite-graphene oxide/MgAl-layered double hydroxide composites for efficient removal of emulsified oils from various oil-in-water emulsions, J. Chem. Eng. Data, 63 (2018) 4689–4702.
  47. Y.M.H. Zhou, L. Shuai, X.Y. Jiang, F.P. Jiao, J.G. Yu, Visible-lightdriven photocatalytic properties of layered double hydroxide supported-Bi2O3 modified by Pd(II) for methylene blue, Adv. Powder Technol., 26 (2015) 439–447.
  48. G.Q. Zhao, C.F. Li, X. Wu, J.G. Yu, X.Y. Jiang, W.J.H. Hu, F.P. Jiao, Reduced graphene oxide modified NiFe-calcinated layered double hydroxides for enhanced photocatalytic removal of methylene blue, Appl. Surf. Sci., 434 (2018) 251–259.
  49. G.H. Zhang, W.S. Guan, H. Shen, X. Zhang, W.Q. Fan, C.Y. Lu, H.Y. Bai, L.S. Xiao, W. Gu, W.D. Shi, Organic additives-free hydrothermal synthesis and visible-light-driven photodegradation of tetracycline of WO3 nanosheets, Ind. Eng. Chem. Res., 53 (2014) 5443–5450.
  50. B. Carlson, K. Leschkies, E.S. Aydil, B. Carlson, X.Y. Zhu, Valence band alignment at cadmium selenide quantum dot and zinc oxide (1010) interfaces, J. Phys. Chem. C, 112 (2008) 8419–8423.
  51. M. Moradi, B. Kakavandi, A. Bahadoran, S. Giannakis, E. Dehghanifard, Intensification of persulfate-mediated elimination of bisphenol A by a spinel cobalt ferrite-anchored g-C3N4 S-scheme photocatalyst: catalytic synergies and mechanistic interpretation, Sep. Purif. Technol., 120 (2022) 120313, doi: 10.1016/j.seppur.2021.120313.
  52. W.T. Sun, S. Meng, S.J. Zhang, X.Z. Zheng, X.J. Ye, X.L. Fu, S.F. Chen, Insight into the transfer mechanisms of photogenerated carriers for heterojunction photocatalysts with the analogous positions of valence band and conduction band: a case study of ZnO/TiO2, J. Phys. Chem. C, 122 (2018) 15409–15420.
  53. M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, Review on magnetically separable graphitic carbon nitridebased nanocomposites as promising visible-light-driven photocatalysts, J. Mater. Sci., 29 (2018) 1719–1747.