References
   -  Y. Dai, W. Wang, L. Lub, L. Yan, D. Yu, Utilization of biochar
    for the removal of nitrogen and phosphorus, J. Cleaner Prod.,
    257 (2020) 120–573. 
-  S. Fiorilli, L. Rivoira, G. Calì, M. Appendini, M. Concetta,
    M. Coïsson, B. Onida, Iron oxide inside SBA-15 modified with
    amino groups as reusable adsorbent for highly efficient removal
    of glyphosate from water, Appl. Surf. Sci., 411 (2017) 457–465. 
-  N. Botten, L.J. Wood, J.R. Werner, Glyphosate remains in
    forest plant tissues for a decade or more, For. Ecol. Manage.,
    493 (2021) 119–259. 
-  N. Lemke, A. Murawski, M.I.H. Schmied-Tobies, E. Rucic,
    H.-W. Hoppe, A. Conrad, M. Kolossa-Gehring, Glyphosate
    and aminomethylphosphonic acid (AMPA) in urine of children
    and adolescents in Germany - Human biomonitoring results
    of the German Environmental Survey 2014–2017 (GerES V),
    Environ. Int., 156 (2021) 106–769. 
-  Q. Tang, W. Chen, Y. Lv, S. Yang, Y. Xu, Z-scheme hierarchical
	  Cu2S/Bi2WO6 composites for improved photocatalytic activity
    of glyphosate degradation under visible light irradiation,
    Sep. Purif. Technol., 236 (2020) 1–8. 
-  D. Feng, A. Soric, O. Boutin, Treatment technologies and
    degradation pathways of glyphosate: a critical review,
    Sci. Total Environ., 742 (2020) 1–14. 
-  C.A. Villamar-Ayala, J.V. Carrera-Cevallos, R. Vasquez-Medrano, P.J. Espinoza-Montero, Fate, eco-toxicological
    characteristics, and treatment processes applied to water
    polluted with glyphosate: a critical review, Crit. Rev. Env.
    Sci. Technol., 49 (2019) 1476–1514. 
-  B.J. Mahler, P.C. Van Metre, T.E. Burley, K.A. Loftin, M.T. Meyer,
    L.H. Nowell, Similarities and differences in occurrence and
    temporal fluctuations in glyphosate and atrazine in small
    Midwestern streams (USA) during the 2013 growing season,
    Sci. Total Environ., 579 (2017) 149–158. 
-  H. Wu, Q. Sun, J. Chen, G.Y. Wang, D. Wang, X.F. Zeng,
    J.X. Wang, Citric acid-assisted ultrasmall CeO2 nanoparticles for
    efficient photocatalytic degradation of glyphosate, Chem. Eng.
    J., 425 (2021) 130–640. 
-  X. Luo, J.B. Zhang, L. He, X.J. Yang, P.Y. Lü, Analysis of the
    performance and mechanism of phosphorus removal in
    water by steel slag, Environ. Sci., 42 (2021) 2324–2333. 
-  X.X. Wang, M. Wang, Y.X. Jia, T.T. Yao, The feasible study on the
    reclamation of the glyphosate neutralization liquor by bipolar
    membrane electrodialysis, Desalination, 300 (2012) 58–63. 
-  X. Li, L. Huang, H. Fang, M. Chen, Z. Cui, Z. Sun, D. Reible,
    Phosphorus adsorption by sediment considering mineral
    composition and environmental factors, Environ. Sci. Pollut.
    Res., 28 (2021) 17495–17505. 
-  Z. Fan, W. Zeng, Q. Meng, H. Liu, C. Ma, Y. Peng, Achieving
    partial nitrification, enhanced biological phosphorus removal
    and in-situ fermentation (PNPRF) in continuous-flow system
    and mechanism analysis at transcriptional level, Chem. Eng. J.,
    428 (2022) 131098, doi: 10.1016/j.cej.2021.131098. 
-  Z. Wang, Y. Lin, D. Wu, Hydrous iron oxide modified
    diatomite as an active filtration medium for phosphate capture,
    Chemosphere, 144 (2016) 1290–1298. 
-  Q.P. Cheng, H.X. Li, Y.L. Xu, S. Chen, Y.H. Liao, F. Deng,
    J.F. Li, Study on the adsorption of nitrogen and phosphorus
    from biogas slurry by NaCl-modified zeolite, PLoS One,
    12 (2017) e0176109, doi: 10.1371/journal.pone.0176109. 
-  F.Q. Gan, J.M. Zhou, H.Y. Wang, C.W. Du, X.Q. Chen, Removal
    of phosphate from aqueous solution by thermally treated
    natural palygorskite, Water Res., 43 (2009) 2907–2910. 
-  H.Y. Zhu, R. Jiang, L. Xiao, G.M. Zeng, Preparation,
    characterization, adsorption kinetics and thermodynamics of
    novel magnetic chitosan enwrapping nanosized γ-Fe2O3 and
    multi-walled carbon nanotubes with enhanced adsorption
    properties for methyl orange, Bioresour. Technol., 101 (2010)
    5063–5069. 
-  W.W. Huang, S.B. Wang, Z.H. Zhu, L. Li, X.D. Yao, V. Rudolph,
    F. Haghseresht, Phosphate removal from wastewater using red
    mud, J. Hazard. Mater., 158 (2008) 35–42. 
-  P. Zhang, Q. An, J. Guo, C.C. Wang, Synthesis of mesoporous
    magnetic Co-NPs/carbon nanocomposites and their adsorption
    property for methyl orange from aqueous solution,
    J. Colloid Interface Sci., 389 (2013) 10–15. 
-  W. Cheah, S. Hosseini, M.A. Khan, T.G. Chuah, T.S.A. Choong,
    Acid modified carbon coated monolith for methyl orange
    adsorption, Chem. Eng. J., 215 (2013) 747–754. 
-  R. Huang, Q. Liu, J. Huo, B. Yang, Adsorption of methyl orange
    onto protonated cross-linked chitosan, Arabian J. Chem.,
    10 (2017) 24–32. 
-  Z. Gu, B. Deng, J. Yang, Synthesis and evaluation of ironcontaining
    ordered mesoporous carbon (FeOMC) for arsenic
    adsorption, Microporous Mesoporous Mater., 102 (2007)
    265–273. 
-  N.F. Nejad, E. Shams, M.K. Amini, J.C. Bennett, Synthesis
    of magnetic mesoporous carbon and its application for
    adsorption of dibenzothiophene, Fuel Process. Technol.,
    106 (2013) 376–384. 
-  M. Valix, W.H. Cheung, G. McKay, Roles of the textural
    and surface chemical properties of activated carbon in the
    adsorption of acid blue dye, Langmuir, 22 (2006) 4574–4582. 
-  J. Goscianska, A. Olejnik, R. Pietrzak, Comparison of ordered
    mesoporous materials sorption properties towards amino
    acids, Adsorption (Boston), 19 (2013) 581–588. 
-  A.A. Attia, W.E. Rashwan, S.A. Khedr. Capacity of activated
    carbon in the removal of acid dyes subsequent to its thermal
    treatment, Dyes Pigm., 69 (2006) 128–136. 
-  A. Heidari, H. Younesi, A. Rashidi, A.A. Ghoreyshi, Evaluation
    of CO2 adsorption with eucalyptus wood based activated
    carbon modified by ammonia solution through heat treatment,
    Chem. Eng. J., 254 (2014) 503–513. 
-  Y.L. Tan, Md. Azharul Islam, M. Asif, B.H. Hameed, Adsorption
    of carbon dioxide by sodium hydroxide-modified granular
    coconut shell activated carbon in a fixed bed, Energy, 77 (2014)
    926–931. 
-  S. Sumathi, S. Bhatia, K.T. Lee, Selection of best impregnated
    palm shell activated carbon (PSAC) for simultaneous removal
    of SO2 and NOx, J. Hazard. Mater., 176 (2010) 1093–1096. 
-  F. Haghseresht, S. Nouri, G.Q.M. Lu, Effects of carbon surface
    chemistry and solution pH on the adsorption of binary aromatic
    solutes, Carbon, 41 (2003) 881–892. 
-  Q.S. Wu, M. Jiang, W.J. Zhang, Preparation of adsorbent
    from nickel slag for removal of phosphorus from glyphosate
    by-product salt, Sep. Sci. Technol., 57 (2022) 2393–2406. 
-  M. Du, Y.Y. Zhang, Z.Y. Wang, M.R. Lv, Q. Xu, Z.Q. Chen,
    Q.X. Wen, A. Li, La-doped activated carbon as high-efficiency
    phosphorus adsorbent: DFT exploration of the adsorption
    mechanism, Sep. Purif. Technol., 298 (2022) 121–585. 
-  J.X. Chen, K.L. Liu, M.H. Jiang, Jian Han, M.L. Liu, C.B. Wang,
    C.L. Li, Controllable preparation of porous hollow carbon
	  sphere@ZIF-8: novel core-shell nanomaterial for Pb2+ adsorption,
    Colloids Surf., A, 568 (2019) 461–469. 
-  V.A. Hoang, K. Yoshizuka, S. Nishihama, Oxidative adsorption
    of arsenic from water environment by activated carbon
    modified with cerium oxide/hydroxide, Chem. Eng. Res. Des.,
    186 (2022) 161–173. 
-  D. Balarak, G. McKay, Utilization of MWCNTs/Al2O3 as
    adsorbent for ciprofloxacin removal: equilibrium, kinetics and
    thermodynamic studies, J. Environ. Sci. Health., Part A Environ.
    Sci. Eng. Toxic Hazard. Subst. Control, 56 (2021) 324–333. 
-  T.J. Al-Musawi, N. Mengelizadeh, O. Al Rawi, D. Balarak,
    Capacity and modeling of Acid blue 113 dye adsorption onto
    chitosan magnetized by Fe2O3 nanoparticles, J. Polym. Environ.,
    30 (2022) 344–359. 
-  J.J. Yuan, Y. Zhu, J.Z. Wang, L.P. Gan, M.Y. He, T. Zhang,
    P.P. Li, F.X. Qiu, Preparation and application of Mg-Al
    composite oxide/coconut shell carbon fiber for effective removal
    of phosphorus from domestic sewage, Food Bioprod. Process.,
    126 (2021) 293–304. 
-  P. Gao, Y. Zhang, S. Wang, Increasing the hydrophyte
    removal rate of dissolved inorganic phosphorus using a
    novel Fe-Mg-loaded activated carbon hydroponic substrate
    with adsorption-release dual functions, J. Environ. Manage.,
    313 (2022) 114998, doi: 10.1016/j.jenvman.2022.114998. 
-  P. Gao, C. Zhang, Study on phosphorus removal pathway
    in constructed wetlands with thermally modified sepiolite,
    Sustainability, 14 (2022) 12535, doi: 10.3390/su141912535. 
-  J. Diao, L. Shao, D. Liu, Y. Qiao, W. Tan, L. Wu, B. Xie, Removal
    of phosphorus from leach liquor of steel slag: adsorption
    dephosphorization with activated alumina, JOM, 70 (2018)
    2027–2032. 
-  H. Vu, M. Khan, R. Chilakala, T. Lai, T. Thenepalli, J. Ahn,
    D. Park, J. Kim, Utilization of lime mud waste from paper mills
    for efficient phosphorus removal, Sustainability, 11 (2019) 1524,
    doi: 10.3390/su11061524. 
-  W. Li, G. Cai, K. Luo, J. Zhang, H. Li, G. Li, J. Zhang, X. Chen,
    F. Xie, Synthesis of magnesium-modified ceramsite from
    iron tailings as efficient adsorbent for phosphorus removal,
    Sep. Purif. Technol., 326 (2023) 124817, doi: 10.1016/j.seppur.2023.124817. 
-  B. Yang, F. Han, Y. Bai, Z. Xie, T. Shi, J. Wang, Y. Li, Phosphate
    removal performance and mechanism of magnesium–lanthanum-modified coal gasification coarse slag, Mater.
    Today Sustainability, 22 (2023) 100357, doi: 10.1016/j.
    mtsust.2023.100357. 
-  C. Yirong, L.-P. Vaurs, Wasted salted duck eggshells as an
    alternative adsorbent for phosphorus removal, J. Environ.
    Chem. Eng., 7 (2019) 103443, doi: 10.1016/j.jece.2019.103443. 
-  M. Zhang, Y. Zhang, X. Chen, J. Sun, X. Lu, Y. He, Y. Wang,
    Characteristics and mechanism of phosphate removal by
    lanthanum modified bentonite in the presence of dissolved
    organic matter, Chemosphere, 340 (2023) 139957, doi: 10.1016/j.chemosphere.2023.139957. 
-  C. Fu, Y. Li, Y. Zuo, B. Li, C. Liu, D. Liu, Y. Fu, Y. Yin, Fabrication
    of lanthanum/chitosan co-modified bentonite and phosphorus
    removal mechanism from low-concentration landscape water,
    Water Sci. Technol., 86 (2022) 1017–1033. 
-  F. Koochakzadeh, R. Norouzbeigi, H. Shayesteh, Statistically
    optimized sequential hydrothermal route for FeTiO3 surface
    modification: evaluation of hazardous cationic dyes adsorptive
    removal, Environ. Sci. Pollut. Res., 30 (2022) 19167–19181. 
-  D.U. Quintela, D.C. Henrique, P.V. dos Santos Lins, A.H. Ide,
    A. Erto, J.L. da Silva Duarte, L. Meili, Waste of Mytella Falcata
    shells for removal of a triarylmethane biocide from water:
    kinetic, equilibrium, regeneration and thermodynamic
    studies, Colloids Surf., B, 195 (2020) 111230, doi: 10.1016/j.colsurfb.2020.111230.