References
  -  M. Coha, G. Farinelli, A. Tiraferri, M. Minella, D. Vione,
    Advanced oxidation processes in the removal of organic
    substances from produced water: potential, configurations, and
    research needs, Chem. Eng. J., 414 (2021) 128668, doi: 10.1016/j.cej.2021.128668. 
-  S. Esplugas, P.L. Yue, M.I. Pervez, Degradation of 4-chlorophenol
    by photolytic oxidation, Water Res., 28 (1994) 1323–1328. 
-  I. Gasmi, O. Hamdaoui, H. Ferkous, A. Alghyamah,
    Sonochemical advanced oxidation process for the degradation
    of furosemide in water: effects of sonication’s conditions
    and scavengers, Ultrason. Sonochem., 95 (2023) 106361,
    doi: 10.1016/j.ultsonch.2023.106361. 
-  J. Peller, O. Wiest, P.V. Ka, Synergy of combining sonolysis
    and photocatalysis in the degradation and mineralization
    of chlorinated aromatic compounds, Environ. Sci. Technol.,
    37 (2003) 1926–1932. 
-  Z.H. Diao, F.X. Dong, L. Yan, Z.L. Chen, W. Qian, L.J. Kong,
    Z.W. Zhang, T. Zhang, X.Q. Tao, J.J. Du, D. Jiang, W. Chu,
    Synergistic oxidation of Bisphenol A in a heterogeneous
    ultrasound-enhanced sludge biochar catalyst/persulfate
    process: reactivity and mechanism, J. Hazard. Mater., 384 (2020)
  121385, doi: 10.1016/j.jhazmat.2019.121385. 
-  D.S. Ma, H. Yi, C. Lai, X.G. Liu, X.Q. Huo, Z.W. An, L. Li,
    Y.K. Fu, B.S. Li, M.M. Zhang, L. Qin, S.Y. Liu, L. Yang, Critical
    review of advanced oxidation processes in organic wastewater
    treatment, Chemosphere, 275 (2021) 130104, doi: 10.1016/j.chemosphere.2021.130104. 
-  D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes,
    U. Hübner, Evaluation of advanced oxidation processes for
    water and wastewater treatment - a critical review, Water Res.,
    139 (2018) 118–131. 
-  A.P. Bhat, P.R. Gogate, Degradation of nitrogen-containing
    hazardous compounds using advanced oxidation processes:
    a review on aliphatic and aromatic amines, dyes, and
    pesticides, J. Hazard. Mater., 403 (2021) 123657, doi: 10.1016/j.jhazmat.2020.123657. 
-  H. Harada, Sonophotocatalytic decomposition of water using
  TiO2 photocatalyst, Ultrason. Sonochem., 8 (2001) 55–58. 
-  H. Zhao, G.M. Zhang, Q.L. Zhang, MnO2/CeO2 for catalytic
    ultrasonic degradation of methyl orange, Ultrason. Sonochem.,
  21 (2014) 991–996. 
-  N. Ertugay, F.N. Acar, The degradation of Direct Blue 71 by
    sono, photo and sonophotocatalytic oxidation in the presence
    of ZnO nanocatalyst, Appl. Surf. Sci., 318 (2014) 121–126. 
-  Z.H. Zheng, B.L. Zhao, Y.P. Guo, Y.J. Guo, T. Pak, G.T. Li,
    Preparation of mesoporous batatas biochar via soft-template
    method for high efficiency removal of tetracycline, Sci. Total
  Environ., 787 (2021) 147397, doi: 10.1016/j.scitotenv.2021.147397. 
-  W.S. Chen, B.L. Zhao, Y.P. Guo, Y.J. Guo, Z.H. Zheng, T. Pak,
    G.T. Li, Effect of hydrothermal pretreatment on pyrolyzed
    sludge biochars for tetracycline adsorption, J. Environ. Chem.
  Eng., 9 (2021) 106557, doi: 10.1016/j.jece.2021.106557. 
-  M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan,
    D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent
    for contaminant management in soil and water: a review,
    Chemosphere, 99 (2014) 19–33. 
-  G.T. Li, X. Chen, L.Y. Xu, P.C. Lei, S. Zhang, C. Yang, Q.Y. Xiao,
    W.G. Zhao, Sonocatalytic degradation of methylene blue
    using biochars derived from sugarcane bagasse, Desal. Water
    Treat., 88 (2017) 122–127. 
-  S. Nikolaou, J. Vakrosa, E. Diamadopoulos, D. Mantzavinos,
    Sonochemical degradation of propylparaben in the presence of
    agro-industrial biochar, J. Environ. Chem. Eng., 8 (2020) 104010,
  doi: 10.1016/j.jece.2020.104010. 
-  J. Chu, J. Kang, S. Park, C. Lee, Enhanced sonocatalytic degradation
    of bisphenol A with a magnetically recoverable biochar
    composite using rice husk and rice bran as substrate, J. Environ.
    Chem. Eng., 9 (2021) 105284, doi: 10.1016/j.jece.2021.105284. 
-  B. Jun, Y. Kim, Y. Yoon, Y. Yea, C.M. Park, Enhanced
    sonocatalytic degradation of recalcitrant organic contaminants
    using a magnetically recoverable Ag/Fe-loaded activated
    biochar composite, Ceram. Int., 46 (2020) 22521–22531. 
-  D.P. Li, J.H. Qu, Research and technological development
    trends on drinking water safety assurance: water purification
    technologies based on interfacial interactions, Chin. J. Environ.
    Eng., 4 (2010) 1921–1925 (in Chinese). 
-  N. Kishimoto, S. Hamamoto, Removal of linear alkylbenzene
    sulfonate (LAS) by a cetyltrimethylammonium bromide
    (CTAB)-aided coagulation-filtration process, Environ. Technol.,
    43 (2020) 815–823. 
-  S. Ghosh, O. Falyouna, A. Malloum, A. Othmani, C. Bornman,
    H. Bedair, H. Onyeak, Z.T. Al-Sharify, A.O. Jacob, T. Miri,
    C. Osagie, S. Ahmadi, A general review on the use of advance
    oxidation and adsorption processes for the removal of furfural
    from industrial effluents, Microporous Mesoporous Mater.,
  331 (2022) 111638, doi: 10.1016/j.micromeso.2021.111638. 
-  I.P. Meneses, S.D. Novaes, R.S. Dezotti, P.V. Oliveira, D.F.S. Petri,
    CTAB-modified carboxymethyl cellulose/bagasse cryogels for
    the efficient removal of bisphenol A, methylene blue and Cr(VI)
    ions: batch and column adsorption studies, J. Hazard. Mater.,
    421 (2022) 126804, doi: 10.1016/j.jhazmat.2021.126804. 
-  F. Wang, D. Liu, P.W. Zheng, X.F. Ma, Synthesis of rectorite/Fe3O4-CTAB composite for the removal of nitrate and phosphate
  from water, J. Ind. Eng. Chem., 41 (2016) 165–174. 
-  G.E. Do Nascimento, R.A. de Freitas, J.M. Rodríguez-Díaz,
    P.M. Da Silva, T.H. Napoleão, M.M.M.B. Duarte, Degradation
    of the residual textile mixture cetyltrimethylammonium
    bromide/remazol yellow gold RNL-150%/reactive blue BF-5G:
    evaluation photo-peroxidation and photo-Fenton processes
    in LED and UV-C photoreactors, Environ. Sci. Pollut. Res.,
    28 (2021) 64630–64641. 
-  G.T. Li, H.Y. Li, X. Mi, W.G Zhao, Enhanced adsorption of
    Orange II on bagasse-derived biochar by direct addition of
    CTAB, Korean J. Chem. Eng., 36 (2019) 1274–1280. 
-  N.S. Al-Thabaiti, Q.A. AlSulami, Z. Khan, Role of ionic
    surfactants on the activation of K2S2O8 for the advanced
    oxidation processes, J. Mol. Liq., 369 (2023) 120837,
  doi: 10.1016/j.molliq.2022.120837. 
-  G.T. Li, W.Y. Zhu, L.F. Zhu, X.Q. Chai, Effect of pyrolytic
    temperature on the adsorptive removal of 
 p-benzoquinone,
    tetracycline, and polyvinyl alcohol by the biochars from
    sugarcane bagasse, Korean J. Chem. Eng., 33 (2016) 215–221.
-  J. Bandara, J.A. Mielczarski, J. Kiwi, Molecular mechanism of
    surface recognition. Azo dyes degradation on Fe, Ti, and Al
    oxides through metal sulfonate complexes, Langmuir, 15 (1999)
    7670–7679. 
-  Y. Jiang, C. Petrier, T.D. Waite, Kinetics and mechanisms of
    ultrasonic degradation of volatile chlorinated aromatics in
    aqueous solutions, Ultrason. Sonochem., 9 (2002) 317–323. 
-  N.N. Mahamuni, A.B. Pandit, Effect of additives on ultrasonic
    degradation of phenol, Ultrason. Sonochem., 13 (2006) 165–174. 
-  I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic
    degradation of azo dyes in aqueous solution: kinetic and
    mechanistic investigations A review, Appl. Catal., B, 49 (2004)
    1–14. 
-  Y. Sun, J.J. Pignatello, Evidence for a surface dual hole-radical
    mechanism in the titanium dioxide photocatalytic oxidation of
    2,4-D, Environ. Sci. Technol., 29 (1995) 2065–2072. 
-  G.T. Li, K.H. Wong, X.W. Zhang, C. Hu, J.C. Yu, R.C.Y. Chan,
    P.K. Wong, Degradation of AO7 using magnetic AgBr under
    visible light: the roles of oxidizing species, Chemosphere,
    76 (2009) 1185–1191. 
-  G.T. Li, W.G. Zhao, B.B. Wang, Q.Y. Gu, X.W. Zhang, Synergetic
    degradation of Acid Orange 7 by fly ash under ultrasonic
    irradiation, Desal. Water Treat., 57 (2016) 2167–2174. 
-  M. Stylidi, D.I. Kondarides, X.E. Verykios, Pathways of solar
    light-induced photocatalytic degradation of azo dyes in
    aqueous TiO2 suspensions, Appl. Catal., B, 40 (2003) 271–286. 
-  E. Manousaki, E. Psillakis, N. Kalogerakis, D. Mantzavinos,
    Degradation of sodium dodecylbenzene sulfonate in water by
    ultrasonic irradiation, Water Res., 38 (2014) 3751–3759. 
-  D.G. Wayment, D.J. Casadonte Jr., Frequency effect on the
    sonochemical remediation of alachlor, Ultrason, Sonochem.,
    9 (2002) 251–257. 
-  A.D. Gupta, H. Singh, S. Varjani, M.K. Awasthi, B.S. Giri,
    A. Pandey, A critical review on biochar-based catalysts for
    the abatement of toxic pollutants from water via advanced
    oxidation processes (AOPs), Sci. Total Environ., 849 (2022)
    157831, doi: 10.1016/j.scitotenv.2022.157831. 
-  X.D. Zhu, Y.C. Liu, C. Zhou, G. Luo, S.C. Zhang, J.M. Chen,
    A novel porous carbon derived from hydrothermal carbon for
    efficient adsorption of tetracycline, Carbon, 77 (2014) 627–636. 
-  W.T. Liu, D.J. Ren, J. Wu, Z.B. Wang, S.Q. Zhang, X.Q. Zhang,
    X.Y. Gong, Adsorption behavior of 2,4-DCP by rice straw biochar
    modified with CTAB, Environ. Technol., 42 (2021) 3797–3806. 
-  S. Chatterjee, M.W. Lee, S.H. Woo, Influence of impregnation
    of chitosan beads with cetyltrimethyl ammonium bromide
    on their structure and adsorption of Congo red from aqueous
    solutions, Chem, Eng. J., 155 (2009) 254–259. 
-  Z.X. Hua, Y.P. Pan, Q.K. Hong, Adsorption of Congo red dye in
    water by orange peel biochar modified with CTAB, RSC Adv.,
    13 (2023) 12502–12508.