References

  1. D. Woolf, J.E. Amonette, F.A. Street-Perrott, J. Lehmann, S. Joseph, Sustainable biochar to mitigate global climate change, Nat. Commun., 1 (2010) 56, doi: 10.1038/ncomms1053.
  2. J. Lehmann, S. Joseph, Biochar for Environmental Management: Science, Technology and Implementation, Routledge, Taylor & Francis Group, Abingdon and New York, 2015.
  3. D. Xu, L. Yang, K. Ding, Y. Zhang, W. Gao, Y. Huang, H. Sun, X. Hu, S.S.A. Syed-Hassan, S. Zhang, H. Zhang,
    Mini-review on char catalysts for tar reforming during biomass gasification: the importance of char structure, Energy Fuels, 34 (2020) 1219–1229.
  4. Q. Hu, J. Jung, D. Chen, K. Leong, S. Song, F. Li, B.C. Mohan, Z. Yao, A.K. Prabhakar, X.H. Lin, E.Y. Lim, L. Zhang, G. Souradeep, Y.S. Ok, H.W. Kua, S.F.Y. Li, H.T.W. Tan, Y. Dai, Y.W. Tong, Y. Peng, S. Joseph, C.H. Wang, Biochar industry to circular economy, Sci. Total Environ., 757 (2021) 143820, doi: 10.1016/J.SCITOTENV.2020.143820.
  5. E.F. Zama, B.J. Reid, H.P.H. Arp, G.X. Sun, H.Y. Yuan, Y.G. Zhu, Advances in research on the use of biochar in soil for remediation: a review, J. Soils Sediments, 18 (2018) 2433–2450.
  6. J. Yuan, Y. Wen, D.D. Dionysiou, V.K. Sharma, X. Ma, Biochar as a novel carbon-negative electron source and mediator: electron exchange capacity (EEC) and environmentally persistent free radicals (EPFRs): a review, Chem. Eng. J., 429 (2022) 132313, doi: 10.1016/J.CEJ.2021.132313.
  7. A.M. Dehkhoda, N. Ellis, E. Gyenge, Effect of activated biochar porous structure on the capacitive deionization of NaCl and ZnCl2 solutions, Microporous Mesoporous Mater., 224 (2016) 217–228.
  8. W.J. Liu, H. Jiang, H.Q. Yu, Emerging applications of biochar-based materials for energy storage and conversion, Energy Environ. Sci., 12 (2019) 1751–1779.
  9. J. Lim, Y.U. Shin, S. Hong, Enhanced capacitive deionization using a biochar-integrated novel flow-electrode, Desalination, 528 (2022) 115636, doi: 10.1016/J.DESAL.2022.115636.
  10. F. Srocke, L. Han, P. Dutilleul, X. Xiao, D.L. Smith, O. Mašek, Synchrotron X-ray microtomography and multifractal analysis for the characterization of pore structure and distribution in softwood pellet biochar, Biochar, 1 (2021) 3, doi: 10.1007/s42773-021-00104-3.
  11. K. Weber, P. Quicker, Properties of biochar, Fuel, 217 (2018) 240–261.
  12. S. Il Jeon, H.R. Park, J.G. Yeo, S. Yang, C.H. Cho, M.H. Han, D.K. Kim, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes, Energy Environ. Sci., 6 (2013) 1471–1475.
  13. C. Zhang, J. Ma, L. Wu, J. Sun, L. Wang, T. Li, T.D. Waite, Flow electrode capacitive deionization (FCDI): recent developments, environmental applications, and future perspectives, Environ. Sci. Technol., 55 (2021) 4243–4267.
  14. F. Yang, Y. He, L. Rosentsvit, M.E. Suss, X. Zhang, T. Gao, P. Liang, Flow-electrode capacitive deionization: a review and new perspectives, Water Res., 200 (2021) 117222, doi: 10.1016/j.watres.2021.117222.
  15. F. Yu, Z. Yang, Y. Cheng, S. Xing, Y. Wang, J. Ma, A comprehensive review on flow-electrode capacitive deionization: design, active material and environmental application, Sep. Purif. Technol., 281 (2022) 119870, doi: 10.1016/J.SEPPUR.2021.119870.
  16. S. Yang, J. Choi, J.G. Yeo, S. Il Jeon, H.R. Park, D.K. Kim, Flowelectrode capacitive deionization using an aqueous electrolyte with a high salt concentration, Environ. Sci. Technol., 50 (2016) 5892–5899.
  17. A. Rommerskirchen, A. Kalde, C.J. Linnartz, L. Bongers, G. Linz, M. Wessling, Unraveling charge transport in carbon flow-electrodes: performance prediction for desalination applications, Carbon N. Y., 145 (2019) 507–520.
  18. S. Porada, D. Weingarth, H.V.M. Hamelers, M. Bryjak, V. Presser, P.M. Biesheuvel, Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation, J. Mater. Chem. A, 2 (2014) 9313–9321.
  19. K. Tang, S. Yiacoumi, Y. Li, C. Tsouris, Enhanced water desalination by increasing the electroconductivity of carbon powders for high-performance flow-electrode capacitive deionization, ACS Sustainable Chem. Eng., 7 (2018) 1085–1094.
  20. K.S. Ngai, Electrode Materials for Electrochemical Double-Layer Capacitors, LF. Cabeza, Ed., Encyclopedia of Energy Storage, Elsevier, 2022, pp. 341–350, ISBN 9780128197301.
    doi: 10.1016/B978-0-12-819723-3.00108-6
  21. G. Ravenni, O.H. Elhami, J. Ahrenfeldt, U.B. Henriksen, Y. Neubauer, Adsorption and decomposition of tar model compounds over the surface of gasification char and active carbon within the temperature range 250°C–800°C, Appl. Energy, 241 (2019) 139–151.
  22. S. Dahiya, B.K. Mishra, Enhancing understandability and performance of flow electrode capacitive deionisation by optimizing configurational and operational parameters: a review on recent progress, Sep. Purif. Technol., 240 (2020) 116660, doi: 10.1016/j.seppur.2020.116660.
  23. K.B. Hatzell, M.C. Hatzell, K.M. Cook, M. Boota, G.M. Housel, A. McBride, E.C. Kumbur, Y. Gogotsi, Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization, Environ. Sci. Technol., 49 (2015) 3040–3047.
  24. D.V. Cuong, P.C. Wu, N.L. Liu, C.H. Hou, Hierarchical porous carbon derived from activated biochar as an eco-friendly electrode for the electrosorption of inorganic ions, Sep. Purif. Technol., 242 (2020) 116813, doi: 10.1016/J.SEPPUR.2020.116813.
  25. S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442.
  26. Y. Shen, Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification, Renewable Sustainable Energy Rev., 43 (2015) 281–295.
  27. L. Tsechansky, E.R. Graber, Methodological limitations to determining acidic groups at biochar surfaces via the Boehm titration, Carbon N. Y., 66 (2014) 730–733.
  28. N.B. Klinghoffer, M.J. Castaldi, A. Nzihou, Influence of char composition and inorganics on catalytic activity of char from biomass gasification, Fuel, 157 (2015) 37–47.
  29. D. Feng, H. Sun, Y. Ma, S. Sun, Y. Zhao, D. Guo, G. Chang, X. Lai, J. Wu, H. Tan, Catalytic mechanism of K and Ca on the volatile-biochar interaction for rapid pyrolysis of biomass: experimental and simulation studies, Energy Fuels, 34 (2020) 9741–9753.
  30. J. Ahrenfeldt, U. Henriksen, T.K. Jensen, B. Gøbel, L. Wiese, A. Kather, H. Egsgaard, Validation of a continuous combined heat and power (CHP) operation of a two-stage biomass gasifier, Energy Fuels, 20 (2006) 2672–2680.
  31. J. Jagiełło, Stable numerical solution of the adsorption integral equation using splines, Langmuir, 10 (2002) 2778–2785.
  32. J. Jagiello, J.P. Olivier, 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation, Carbon N. Y., 55 (2013) 70–80.
  33. J. Bitenc, A. Vizintin, J. Grdadolnik, R. Dominko, Tracking electrochemical reactions inside organic electrodes by operando IR spectroscopy, Energy Storage Mater., 21 (2019) 347–353.
  34. M. Ilić, F.H. Haegel, A. Lolić, Z. Nedić, T. Tosti, I.S. Ignjatović, A. Linden, N.D. Jablonowski, H. Hartmann, Surface functional groups and degree of carbonization of selected chars from different processes and feedstock, PLoS One, 17 (2022) e0277365, doi: 10.1371/JOURNAL.PONE.0277365.
  35. C. Qin, H. Wang, X. Yuan, T. Xiong, J. Zhang, J. Zhang, Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices, Chem. Eng. J., 382 (2020) 122977, doi: 10.1016/J.CEJ.2019.122977.
  36. A. Dufour, A. Celzard, V. Fierro, E. Martin, F. Broust, A. Zoulalian, Catalytic decomposition of methane over a wood char concurrently activated by a pyrolysis gas, Appl. Catal., A, 346 (2008) 164–173.
  37. D. Boonpakdee, C.F. Guajardo Yévenes, W. Surareungchai, C. La-O-Vorakiat, Exploring non-linearities of carbon-based microsupercapacitors from an equivalent circuit perspective, J. Mater. Chem. A, 6 (2018) 7162–7167.
  38. M. Forghani, S.W. Donne, Method comparison for deconvoluting capacitive and pseudo-capacitive contributions to electrochemical capacitor electrode behavior, J. Electrochem. Soc., 165 (2018) A664–A673.
  39. S. Bhattacharjee, DLS and zeta potential – What they are and what they are not?, J. Control Release, 235 (2016) 337–351.
  40. D. Biriukov, P. Fibich, M. Předota, Zeta potential determination from molecular simulations, J. Phys. Chem. C, 124 (2020) 3159–3170.
  41. T.F. Tadros, Ed., Volume 1 Basic Principles of Interface Science and Colloid Stability, De Gruyter, n.d. doi: 10.1515/9783110540895.
  42. J. Ma, C. He, D. He, C. Zhang, T.D. Waite, Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI, Water Res., 144 (2018) 296–303.
  43. K. Alsaikhan, A. Alsultan, A. Alkhaldi, A. Bentalib, A. Abutalib, D. Wu, J. Li, R. Xie, Z. Peng, M. Khamis, I. Wait, V. Nenov, Carbon material-based flow-electrode capacitive deionization for continuous water desalination, Processes, 11 (2023) 195, doi: 10.3390/PR11010195.
  44. J.H. Choi, Determination of the electrode potential causing Faradaic reactions in membrane capacitive deionization, Desalination, 347 (2014) 224–229.
  45. P. Nativ, Y. Badash, Y. Gendel, New insights into the mechanism of flow-electrode capacitive deionization, Electrochem. Commun., 76 (2017) 24–28.
  46. C. Zhang, D. He, J. Ma, W. Tang, T.D. Waite, Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: a review, Water Res., 128 (2018) 314–330.
  47. I. Cohen, E. Avraham, Y. Bouhadana, A. Soffer, D. Aurbach, Long term stability of capacitive de-ionization processes for water desalination: the challenge of positive electrodes corrosion, Electrochim. Acta, 106 (2013) 91–100.
  48. J.R. Rumble, D.R. Lide, T.J. Bruno, CRC Handbook of Chemistry and Physics [2019–
  49. : A Ready-Reference Book of Chemical and Physical Data, CRC Press, Boca Raton, 2019.
  50. A. Rommerskirchen, C.J. Linnartz, F. Egidi, S. Kendir, M. Wessling, Flow-electrode capacitive deionization enables continuous and energy-efficient brine concentration, Desalination, 490 (2020) 114453, doi: 10.1016/j.desal.2020.114453.
  51. X. Ruan, Y. Sun, W. Du, Y. Tang, Q. Liu, Z. Zhang, W. Doherty, R.L. Frost, G. Qian, D.C.W. Tsang, Formation, characteristics, and applications of environmentally persistent free radicals in biochars: a review, Bioresour. Technol., 281 (2019) 457–468.
  52. Y. Liu, M. Paskevicius, M.V. Sofianos, G. Parkinson, S. Wang, C.Z. Li, A SAXS study of the pore structure evolution in biochar during gasification in H2O, CO2 and H2O/CO2, Fuel, 292 (2021) 120384, doi: 10.1016/j.fuel.2021.120384.