1. B. Liu, D.A. Reckhow, Y. Li, A two-site chlorine decay model for the combined effects of pH, water distribution temperature and in-home heating profiles using differential evolution, Water Res., 53 (2014) 47–57.
  2. B. Warton, A. Heitz, C. Joll, R. Kagi, A new method for calculation of the chlorine demand of natural and treated waters, Water Res., 40 (2006) 2877–2884.
  3. P. Charisiadis, S.S. Andra, K.C. Makris, C.A. Christophi, D. Skarlatos, V. Vamvakousis, S. Kargaki, E.G. Stephanou, Spatial and seasonal variability of tap water disinfection by-products within distribution pipe networks, Sci. Total Environ., 506–507 (2015) 26–35.
  4. S.D. Richardson, M.J. Plewa, E.D. Wagner, R. Schoeny, D.M. Demarini, Occurrence, genotoxicity and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research, Mutat. Res., 636 (2007) 178–207.
  5. M.J. Rodriguez, J. S´Erodes, Laboratory-scale chlorination to estimate the levels of halogenated DBPs in full-scale distribution systems, Environ. Monit. Assess., 110 (2005) 323–340.
  6. S. Chowdhury, P. Champagne, P.J. McLellan, Models for predicting disinfection byproduct (DBP) formation in drinking waters: A chronological review, Sci. Total Environ., 407 (2009) 4189–4206.
  7. J. Grellier, L. Rushton, D.J. Briggs and M.J. Nieuwenhuijsen, Assessing the human health impacts of exposure to disinfection by-products — A critical review of concepts and methods, Environ Int., 78 (2015) 61–81.
  8. WIHC, Turkish Legislation of Water Intended for Human Consumption, 2013.
  9. WHO (World Health Organization), Guidelines for Drinking Water Quality, 4th ed., 2011, 564 p.
  10. A.O. Al-Jasser, Chlorine decay in drinking-water transmission and distribution systems: Pipe service age effect, Water Res., 41 (2007) 387–396.
  11. Z. Ohar, A. Ostfeld, Optimal design and operation of booster chlorination stations layout in water distribution systems, Water Res., 58 (2014) 209–220.
  12. L.A. Rossman, R.M. Clark, W.M. Grayman, Modeling chlorine residuals in drinking-water distribution systems, J. Environ. Eng-ASCE, 120 (1994) 803–820.
  13. J. Muranho, A. Ferreira, J. Sousa, A. Gomesand, A. Sá Marques, Technical performance evaluation of water distribution networks based on EPANET, Procedia Eng., 70 (2014) 1201–1210.
  14. A.M. Georgescu and S.C. Georgescu, Chlorine concentration decay in the water distribution system of a town with 50000 inhabitants, U.P.B. Sci. Bull., Series D., 74 (1) (2012) 103–114.
  15. J. Stillman, Y. Lee, E. Sinha, H. Piao, D. Hartman, C. Bush, chlorine bulk decay coefficients to calibrate the gcww all-pipes distribution system model, world environmental and water resources congress, American Society of Civil Engineers, Rhode Island, United States, 2010, pp. 4393–4404.
  16. J.R. Newbold, Comparison and Simulation of a Water Distribution Network in EPANET and a New Generic Graph Trace Analysis Based Model, MSc Thesis, 2009, Blacksburg, VA, 67.
  17. T. Koppel and A.Vassiljev, Use of modelling error dynamics for the calibration of water distribution systems, Adv. Eng. Softw., 45 (2012) 188–196.
  18. L. Monteiroa, D. Figueiredoa, S. Diasc, R. Freitas, D. Covas, J. Menaia, S.T. Coelho, Modeling of chlorine decay in drinking water supply systems using EPANET MSX, 12th International Conference on Computing and Control for the Water Industry, CCWI 2013, Procedia Eng., 70 (2014) 1192–1200.
  19. N.B. Hallam, J.R. West, C.F. Forster, J.C. Powell, I. Spencer, The decay of chlorine associated with the pipe wall in water distribution systems, Water Res., 36 (14) (2002) 3479–3488.
  20. M. Blokker, J. Vreeburga, V. Speight, Residual chlorine in the extremities of the drinking water distribution system: the influence of stochastic water demands, Procedia Eng., 70 (2014) 172–180.
  21. H. Kim, S. Kim, J. Koob, Modelling chlorine decay in a pilot scale water distribution system subjected to transient, Procedia Eng., 119 (2015) 370–378.
  22. I.E. Karadirek, S. Kara, A. Muhammetoglu, H. Muhammetoglu, S. Soyupak, Management of chlorine dosing rates in urban water distribution networks using online continuous monitoring and modeling, Urban Water J., 2014, DOI:10.1080/15730 62X.2014.992916.
  23. J. P. Cooper, Development of a chlorine decay and total trihalomethane formation modeling protocol using initial distribution system evaluation data, PhD thesis, 2009, Ohio, USA, 160.
  24. J.M. Arevalo 2007, Modeling free chlorine and chloramine decay in a pilot distribution system, PhD Thesis, Florida, USA, 164 p.
  25. L.I. Xin, G.A. Da-ming, Q.I. Jing-yao, M. Ukita, Z.H.A.O. Hongbin, Modeling of residual chlorine in water distribution system, J. Environ. Sci., 15 (1) (2003) 136–144.
  26. B. Kowalska, D. Kowalski, A. Musz, Chlorine decay in water distribution systems, Environ. Prot. Eng., 32(2) (2006) 5–16.
  27. L.E. Johnson, Geographic Information Systems in Water Resources Engineering, CRC Press, 2008, 316.
  28. L.K. Wang and C.T. Yang, Modern Water Resources Engineering, Springer Science & Business Media, 2014, 886
  29. V. Kanakoudis and K. Gonelas, Properly allocating the urban waters meters’ readings to the nodes of a water pipe network simulation model in a developing water utility, Desal. Water Treat., 54(8) (2015) 2190–2203.
  30. V. Kanakoudis and K. Gonelas, Accurate water demand spatial allocation for water networks modeling using a new approach, Urban Water J., 12(5) (2015) 362–279.
  31. ASAT “ASAT Water Quality Reports” Available at: (Accessed: 08/06/2015).
  32. T. Akdeniz, Optimisation of number of booster stations considered by cost and quality constraints in drinking water networks, PhD Thesis 2016 (in progress).
  33. L. Rossman, USEPA EPANET Users Manual, Office of Research and Development, Drinking Water Division, Ohio, 2000, 200 p.