References
  -  M. Maretto, F. Blanchi, R. Vignola, S. Canepari, M. Baric, R.
    Iazzoni, M. Tagliabue, M. Petrangeli Papini, Microporous and
    mesoporous materials for the treatment of wastewater produced
    by petrochemical activities, J. Clean. Prod., 77 (2014) 22–34. 
-  M. Maretto, R. Vignola, C.D. Williams, R. Bagatin, A. Latini,
    M. Petrangeli Papini, Adsorption of hydrocarbons from industrial
    wastewater onto a silica mesoporous material: structural
    and thermal study, Microporous Mesoporous Mater., 203 (2015)
    139–250. 
-  A.R. Khan, T.A. Al-Bahri, A. Al-Haddad, Adsorption of phenol
    based organic pollutants on activated carbon from multi-component
    dilute aqueous solutions, Water Res., 31 (1997)
    2102–2112. 
-  M. Zabihi, A. Haghighi Asl, A. Ahmadpour, Studies on adsorption
    of mercury from aqueous solution on activated carbons
    prepared from walnut shell, J. Hazard. Mater., 174 (2010)
    251–256. 
-  Y-M. Cho, U. Ghosh, A.J. Kennedy, A. Grossman, G. Ray,
    J.E. Tomaszewski, D.W. Smithenry, T.S. Bridges, R.G. Luthy,
    Field application of activated carbon amendment for in-situ
    stabilization of polychlorinated biphenyls in marine sediment.,
    Environ. Sci. Technol., 43 (2009) 3815–3823. 
-  G. Cornelissen, M. Elmquist Kruså, G.D. Breedveld, E. Eek,
    A.M.P. Oen, H.P.H. Arp, C. Raymond, G. Samuelsson, J.E.
    Hedman,
    Ø. Stokland, J.S. Gunnarsson, Remediation of
    contaminated
    marine sediment using thin-layer capping with
    activated carbon—a field experiment in Trondheim Harbor,
    Norway, Environ. Sci. Technol., 45 (2011) 6110–6116. 
-  Y-M. Cho, D.W. Smithenry, U. Ghosh, A.J. Kennedy, R.N.
    Millward,
    T.S. Bridges, R.G. Luthy, Field methods for amending
    marine sediment with activated carbon and assessing treatment
    effectiveness, Mar. Environ. Res., 64 (2007) 541–555. 
-  S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm
    diameter, Nature, 363 (1993) 603–605. 
-  R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon
    nanotubes-
    the route toward applications, Science, 297 (2002)
    787–792. 
-  Z.P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal,
    P.N. Provencio, Growth of highly oriented carbon nanotubes
    by plasma-enhanced hot filament chemical vapor deposition,
    Appl. Phys. Lett., 73 (1998) 3845–3847. 
-  M.-M. Titirici, R.J. White, N. Brun, V.L. Budarin, D.S. Su, F. del
    Monte, J.H. Clark, M.J. MacLachlan, Sustainable carbon materials,
    Chem. Soc. Rev., 44 (2015) 250–290. 
-  A. Rinaldi, J. Zhang, J. Mizera, F. Girgsdies, N. Wang, S.B.A.
    Hamid, R. Schlogl, D.S. Su, Facile synthesis of carbon nanotube/
    natural bentonite composites as a stable catalyst for styrene
    synthesis, Chem. Commun. (2008) 6528–6530. doi: 10.1039/
    B815335C 
-  M.R. Maschmann, A.D. Franklin, P.B. Amama, D.N. Zakharov,
    E.A. Stach, T.D. Sands, T.S. Fisher, Vertical single- and
    double-walled carbon nanotubes grown from modified
    porous anodic alumina templates, Nanotechnology, 17 (2006)
    3925–3929. 
-  D.S. Su, The use of natural materials in nanocarbon synthesis,
    ChemSusChem, 2 (2009) 1009–1020.  
-  G. Ghasemzadeh, M. Momenpour, F. Omidi, M. Hosseini,
    M. Ahani, A. Barzegari, Applications of nanomaterials in water
    treatment and environmental remediation, Front. Environ. Sci.
    Eng., 8 (2014) 471–482. 
-  A. Ehsani, F. Babaei, H. Mostaanzadeh, Electrochemical and
    optical investigation of conductive polymer and MWCNT
    nanocomposite film, J. Braz. Chem. Soc., 26 (2015) 331–337. 
-  N.M. Mubarak, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar,
    Removal of heavy metals from wastewater using carbon nanotubes,
    Sep. Purif. Technol., 43 (2013) 311–338. 
-  X. Ren, C. Chen, M. Nagatsu, X. Wang, Carbon nanotubes as
    adsorbents in environmental pollution management: a review,
    Chem. Eng. J., 170 (2011) 395–410. 
-  J.-G. Yu, X.-H. Zhao, L.-Y. Yu, F.-P. Jiao, J.-H. Jiang, X.-Q. Chen,
    Removal, recovery and enrichment of metals from aqueous
    solutions using carbon nanotubes, J. Radioanal. Nucl. Chem.,
    299 (2014) 1155–1163. 
-  H. Pourzamani, A.M. Samani Majd, S. Fadaei, Benzene removal
    by hybrid of nanotubes and magnetic nanoparticle from aqueous
    solution, Desal. Water Treat., 57 (2016) 19038–19049.  
-  V.K.K. Upadhyayula, S. Deng, M.C. Mitchell, G.B. Smith, Application
    of carbon nanotube technology for removal of contaminants
    in drinking water: a review, Sci. Total Environ., 408 (2009)
    1–13. 
-  N. Savage, M. Diallo, Nanomaterials and water purification:
    opportunities and challenges, J. Nanopart. Res., 7 (2005)
    331–342. 
-  G.P. Rao, C. Lu, F. Su, Sorption of divalent metal ions from
    aqueous solution by carbon nanotubes: a review, Sep. Purif.
    Technol., 58 (2007) 224–231. 
-  F. Yu, J. Ma, Y. Wu, Adsorption of toluene, ethylbenzene on
    multiwalled carbon nanotubes oxidized by different concentration
    of NaOCl, Front. Environ. Sci. Eng., 6 (2012) 320–329. 
-  B. Nowack, T.D. Bucheli, Occurrence, behavior and effects of
    nanoparticles in the environment, Environ. Pollut., 150 (2007)
    5–22. 
-  S. Cosnier, R. Haddad, D. Moatsou, R.K. O’Reilly, Biofunctionalizable
    flexible bucky paper by combination of multi-walled
    carbon nanotubes and polynorbornene-pyrene – application to
    the bioelectrocatalytic reduction of oxygen, Carbon, 93 (2015)
    713–718. 
-  Y. Lin, S. Taylor, H. Li, K.A.S. Fernando, L. Qu, W. Wang, L. Gu,
    B. Zhou, Y-P. Sun, Advances toward bioapplications of carbon
    nanotubes, J. Mater. Chem., 14 (2004) 527–541. 
-  P. Wu, X. Chen, N. Hu, U.C. Tam, O. Blixt, A. Zettl, C.R.
    Bertozzi, Biocompatible carbon nanotubes generated by functionalization
    with glycodendrimers, Angew. Chem.-Ger. Edit.,
    120 (2008) 5100–5103. 
-  US EPA USEPA Office of Drinking Water Health Advisories, US
    Environmental Protection Agency, Reviews of Environmental
    Contamination and Toxicology, 106 (1988) 189–203. 
-  F. Haghseresht, G.Q. Lu, Adsorption characteristics of phenolic
    compounds onto coal-reject- derived adsorbents, Energy Fuels,
    12 (1998) 1100–1107. 
-  D. Gozzi, A. Latini, L. Lazzarini, Experimental thermodynamics
    of high temperature transformations in single-walled carbon
    nanotube bundles, J. Am. Chem. Soc., 131 (2009) 12474–12482. 
-  A. Aygün, S. Yenisoy-Karakaş, I. Duman, Production of granular
    activated carbon from fruit stones and nutshells and evaluation
    of their physical, chemical and adsorption properties,
    Microporous Mesoporous Mater., 66 (2003) 189–195. 
-  R. Das, S.B. Abd Hamid, M.E. Ali, A.F. Ismail, M.S.M. Annuar,
    S. Ramakrishna, Multifunctional carbon nanotubes in water
    treatment: the present, past and future, Desalination, 354 (2014)
    160–179 
-  X. Wang, Y. Liu, S. Tao, B. Xing, Relative importance of multiple
    mechanisms in sorption of organic compounds by multiwalled
    carbon nanotubes, Carbon, 48 (2010) 3721–3728. 
-  X. Wang, S. Tao, B. Xing, Sorption and competition of aromatic
    compounds and humic acid on multiwalled carbon nanotubes,
    Environ. Sci. Technol., 43 (2009) 6214–6219. 
-  C. Lu, C. Liu, G.P. Rao, Comparisons of sorbent cost for the
	  removal of Ni2+ from aqueous solution by carbon nanotubes
    and granular activated carbon, J. Hazard. Mater., 151 (2008)
    239–246. 
-  F. Piccinno, F. Gottschalk, S. Seeger, B. Nowack, Industrial production
    quantities and uses of ten engineered nanomaterials in
	  Europe and the world, J. Nanopart. Res., 14 (2012) 1–11.