References

  1. M. Ramzi, R. Hosny, M. El-Sayed, M. Fathy, Th. Abdel Moghny, Evaluation of scale inhibitors performance under simulated flowing field conditions using dynamic tube blocking test, Int. J. Chem. Sci., 14 (1) (2016), 16–28.
  2. Z.Z. Chowdhury, S.M. Zain, R.A. Khan, K. Khalisanni, Breakthrough curve analysis for column dynamics sorption of Mn (II) ions from waste water by using Mangostana garcinia peel based granular activated carbon (GAC), J. Chem., (2013), doi:10.1155/2013/959761.
  3. R. Hosny, Th. Abdel-Moghny, M. Ramzi, S.E.M. Desouky, S.A. Shama, Preparation and characterization of natural polymer for treatment oily produced water, Int. J. Current Res., 6(3) (2014), 5413–5418.
  4. A.L. Ahmad, S. Sumathi, B.H. Hameed, Residual oil and suspended solid removal using natural adsorbents chitosan, bentonite and activated carbon: a comparative study, Chem. Eng. J., 108 (2005) 179–185.
  5. A.I. Zouboulis, A. Avranas, Treatment of oil-in-water emulsions by coagulation and dissolved-air flotation, Colloids Surf., 172 (2000) 153–161.
  6. K. Andrew, G. Graeme, G. Jeff., R.S. Brian, Flocculation and coalescence of oil-in-water poly(dimethylsiloxane) and emulsion, Colloid Interface Sci., Ideal Library 227 (2000) 390–397.
  7. R. Hosny, M. Fathy,M. Ramzi, Th. Abdel Moghny, S.E.M. Desouky,S.A. Shama, Treatment of the oily produced water (OPW) usingcoagulant mixtures, Egypt. J. Petroleum (2016) 25, 391–396.
  8. Z.Z. Chowdhury, S.M. Zain, R.A. Khan, K. Khalisanni, Process variables optimization for preparation and characterization of novel adsorbent from lignocellulosic waste, Bioresour. Technol., 7 (2012), 3732–3754.
  9. A.M. Li, Q.X. Zhang, G.C. Zhang, Adsorption of compounds from aqueous solution by a water-compatible hyper cross linked polymeric adsorbent, Chemosphere, 47 (2002) 981–989.
  10. L.B. Sun, X.-Q. Liu, H.-C. Zhou, Design and fabrication of mesoporous heterogeneous basic catalysts, Chem. Soc. Rev., 44 (15) (2015) 5092–5147.
  11. L. Martins, D. Cardoso, Influence of surfactant chain length on basic catalytic properties of Si-MCM-41, Microporous Mesoporous Mater., Nov 1; 106 (2007) 8–16.
  12. L. Martins, T.J. Bonagamba, E.R. de Azevedo, P. Bargiela, D. Cardoso, Surfactant containing Si-MCM-41: an efficient basic catalyst for the Knoevenagel condensation, Appl. Catal., A: General., 312 (2006) 77–85.
  13. A.C. Oliveira, L. Martins, D. Cardoso, Basic catalytic properties of as-synthesized molecular sieves. Microporous Mesoporous Mater., 120 (2009) 206–213.
  14. Y. Kubota, Y. Nishizaki, H. Ikeya, M. Saeki, T. Hida, S. Kawazu, M. Yoshida, H. Fujii, Y. Sugi, Organic–silicate hybrid catalysts based on various defined structures for Knoevenagel condensation, Microporous Mesoporous Mater., 70 (2004) 135–149.
  15. J. Wieslaw, The discovery of mesoporous molecular sieves from the twenty-year perspective, Chem. Soc. Rev., 42 (2013) 3663–3670.
  16. V. Meynen, P. Cool, E.F. Vansant, Verified syntheses of mesoporous materials, Microporous Mesoporous Mater., 125 (2009) 170–223.
  17. C. Perego, M. Roberto, Porous materials in catalysis: challenges for mesoporous materials, Chem. Soc. Rev., 42 (2013) 3956–3976.
  18. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid- crystal template mechanism, Nature, 359 (1992) 710–712.
  19. J.S. Beck, J.C. Vartuli, W. Jf Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D. Hm Olson, E.W. Sheppard, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 114 (1992) 10834– 10843.
  20. I.K. Mbaraka, B.H. Shanks, Conversion of oils and fats using advanced mesoporous heterogeneous catalysts, J. Am. Oil Chem. Soc., 83 (2006) 79–91.
  21. H.Y. Huang, R.T. Yang, D. Chinn, C.L. Munson, Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas, Ind. Eng. Chem. Res., 42 (2003) 2427–2433.
  22. J.H. Drese, S. Choi, R.P. Lively, W.J. Koros, D.J. Fauth, M.M.L. Gray, C.W. Jones, Synthesis–structure–property relationships for hyperbranchedaminosilica CO2 adsorbents, Adv. Funct. Mater., 19 (2009) 3821–3832.
  23. C. Knöfel, C. Martin, V. Hornebecq, P.L. Llewellyn, Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy, J. Phys. Chem. C, 113 (2009) 21726–21734.
  24. M. Kruk, M. Jaroniec, Y. Sakamoto, O. Terasaki, R. Ryoo, C.H. Ko, Determination of pore size and pore wall structure of MCM-41 by using nitrogen adsorption, transmission electron microscopy, and X-ray diffraction, J. Phys. Chem. B, 104 (2000) 292–301.
  25. M. El-Sayed, M. Ramzi, R. Hosny, M. Fathy, Th. Abdel Moghny, Breakthrough curves of oil adsorption on novel amorphous carbon thin film, Water Sci. Technol., 73 (2016) 2361–2369.
  26. A. Chatterjee, S. Schiewer, Biosorption of cadmium (II) ions by citrus peels in a packed bed column: effect of process parameters and comparison of different breakthrough curve models, CLEAN-Soil Air Water, 39 (2011) 874–881.
  27. Z.Z. Chowdhury, S.M. Zain, R.A. Khan, K. Khalisanni, Batch and fixed bed adsorption studies of lead (II) cations from aqueous solutions onto granular activated carbon derived from mangostanagarcinia shell, Bioresour. Technol., 7 (2012) 2895–2915.
  28. M. Fathy, et al., Cation exchange resin nanocomposites based on multi-walled carbon nanotubes. Applied Nanoscience, 2014. 4(1): p. 103-112.
  29. H.C. Thomas, Heterogeneous ion exchange in a flowing system, J. Am. Chem. Soc., 66 (1944) 1466–1664.
  30. Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service time, Am. Ind. Hyg. Assoc. J., 45 (1984) 509–516.
  31. A. Gendron-Badou, T. Coradin, J. Maquet, F. Fröhlich, J. Livage, Spectroscopic characterization of biogenic silica, J. Non-Cryst. Solids, 316 (2003) 331–337.
  32. D.V. Tsu, G. Lucovsky, B.N. Davidson, Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiO r: H (0 < r < 2) alloy system, Phys. Rev. B, 40 (1989) 1795.
  33. K. Saito, A.J. Ikushima, Effects of fluorine on structure, structural relaxation, and absorption edge in silica glass, J. Appl. Phys., 91 (2002) 4886–4890.
  34. T. Suzuki, L. Skuja, K. Kajihara, M. Hirano, T. Kamiya, H. Hosono, Electronic structure of oxygen dangling bond in glassy SiO2: the role of hyperconjugation, Phys. Rev. Lett., 90 (2003) 1–4.
  35. R.J. Prado, T.F. D’addio, M.C.A. Fantini, I. Pereyra, A.M. Flank, Annealing effects of highly homogeneous a-Si1−xCx:H, J. Non-Cryst. Solids, 330 (2003) 196–215.
  36. C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc., 60 (1960) 3973–3993.
  37. C.W. Purnomo, A. Prasetya, The study of adsorption breakthrough curves of Cr(VI) on Bagasse Fly Ash (BFA). In: Proceedings of the world congress on engineering and computer science, San Francisco, USA (2007).
  38. Z. Xu, J. Cai, B. Pan, Mathematically modeling fixed-bed adsorption in aqueous systems, Applied Phys. Eng., 14 (2013) 155–176.
  39. A. Ghribi, M. Chlendi, Modeling of fixed bed adsorption: application to the adsorption of an organic dye, Asian Journal of Textile, 1 (2011) 161–171.
  40. M. Fathy Th. Abdel Moghny, M.M. Abdou, Abdel-Hameed A-A. El-Bellihi, Study the adsorption of Ca (II) and Mg (II) on high crosslinked polystyrene divinyl benzene resin, Int. J. Modern Chem., 7 (2015) 36–44.
  41. M. Fathy, M.A. Mousa, Th. Abdel Moghny, M.M.A. Abdel-Hameed, A-A. ElBellihi, A.E. Awadallah, Synthesis and characterization of cellulose nanoparticles obtained from rice straw waste, Int. J. Modern Organic Chem., 4 (2015) 56–61.