1. WHO Collaborating Centre, Slow Sand Filtration for Community Water Supply, International Reference Centre for Community Water Supply and Sanitation, The Hague, Netherlands (1987).
  2. K. Katayama-Hirayama, A. Suzuki, S. Mukaiyama, H. Kaneko, K. Hirayama, T. Akitsu, Removal of tetrabromobisphenol A by slow sand filtration and a high-performance UV lamp system, Sustain. Environ. Res., 20 (2010) 221–225.
  3. M.K. Smith, H. Zenick, E.L. George, Reproductive toxicology of disinfection by-products, Environ. Health Perspect., 69 (1986) 177–182.
  4. F. Hodin, H. Borén, A. Grimvall, S. Karlsson, Formation of chlorophenols and related compounds in natural and technical chlorination processes, Water Sci. Technol., 24 (1991) 403–410.
  5. O. Legrini, E. Oliveros, A.M. Braun, Photochemical processes for water treatment, Chem. Rev., 93 (1993) 671–698.
  6. J.R. Bolton, S.R. Cater, Homogeneous photo-degradation of pollutants in contaminated water; an introduction, In: R.G. Zepp, G.R. Helz, D.G. Crosby (Eds.), Aquatic and surface photochemistry, CRC Press, Boca Raton, FL, 1994, pp. 467–690.
  7. E.R. Blatchley, Z. Do-Quang, M.L. Janex, J.M. Laine, Process modelling of ultraviolet disinfection, Water Sci. Technol., 38 (1998) 63–69.
  8. M. Czaplicka, Review: sources and transformation of chlorophenols in the natural environment, Sci. Total Environ., 322 (2004) 21–39.
  9. M. Czaplicka, Photo-degradation of chlorophenols in the aqueous solution, J. Hazard. Mater., B134 (2006) 45–59.
  10. Agency for Toxic Substances and Disease Registry (ATSDR), Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Priority list of hazardous substances, (2007).
  11. X. Yin, W. Bian, J. Shi, 4-chlorophenol degradation by pulsed high voltage discharge coupling internal electrolysis, J. Hazard. Mater., 166(2–3) (2009) 1474–1479.
  12. W. Bian, X. Song, D. Liu, J. Zhang, X. Chen, The intermediate products in the degradation of 4-chlorophenol by pulsed high voltage discharge in water, J. Hazard. Mater., 192 (2011) 1330– 1339.
  13. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological profile for chlorophenols, 1999.
  14. A.O. Olaniran, E.O. Igbinosa, Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes, Chemosphere, 83 (2011) 1297–1306.
  15. S. Esplugas, D.M. Bila, L.G.T. Krause, M. Dezotti, Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents, J. Hazard. Mater., 149 (2007) 631–642.
  16. I. Kim, H. Tanaka, Photodegradation characteristics of PPCPs in water with UV treatment, Environ. Int., 35 (2009) 793–802.
  17. K. Katayama-Hirayama, S. Arai, T. Kobayashi, H. Matsuda, Z. Luo, M. Tachibana, H. Kaneko, T. Akitsu, K. Hirayama, Removal of bisphenols by slow sand filtration, Water Sci. Technol., 9 (2009) 263–268.
  18. R.B. Cain, R.F. Bilton, J.H. Darrah, The metabolism of aromatic acids by micro-organisms, Biochem. J., 108 (1968), 797–828.
  19. K.A. Cook, R.B. Cain, Regulation of aromatic metabolism in the fungi: metabolic control of 3-oxoadipate pathway in the yeast Rhodotorula musilaginosa, J. Gen. Microbiol., 85 (1974) 37–50.
  20. K. Katayama-Hirayama, S. Tobita, K. Hirayama, Aromatic degradation in yeast Rhodotorula rubra, Water Sci. Technol., 26 (1992), 773–781.
  21. K. Katayama-Hirayama, S. Tobita, K. Hirayama, Biodegradation of phenol and monochlorophenols by yeast Rhodotorula glutinis, Water Sci. Technol., 30 (1994) 59–66.
  22. H.-J. Knackmuss, M. Hellwig, Utilization and cooxidation of chlorinated phenols by Pseudomonas sp. B 13, Arch. Microbiol., 117 (1978), 1–7.
  23. H.-J. Knackmuss, Degradation of halogenated and sulfonated hydrocarbons. In: T. Leisinger, A.M. Cook, R. Hütter, J. Nüesch (Eds.) Microbial degradation of xenobiotics and recalcitrant compounds (FEMS Symposium; No. 12), Academic Press for the Swiss Academy of Sciences and the Swiss Society of Microbiology on behalf of the Federation of European Microbiological Societies, 1981, pp. 189–221.
  24. J.C. Spain, D.T. Gibson, Oxidation of substituted phenols by Pseudomonas putida Fl and Pseudomonas sp. Strain JS6, Appl. Environ. Microbiol., 54 (1988), 1399–1404.
  25. T. Ledger, D.H. Pieper, B. Gonzalez, Chlorophenol hydroxylases encoded by plasmid pJP4 differentially contribute to chlorophenoxyacetic acid degradation, Appl. Environ. Microbiol., 72 (2006), 2783–2792.
  26. J.A.D. Groening, D. Eulberg, D. Tischler, S.R. Kaschabek, M. Schloemann, Gene redundancy of two-component (chloro) phenolhydroxylases in Rhodococcus opacus 1CP, FEMS Microbiol. Lett., 361 (2014), 68–75.
  27. The Illumination Engineering Institute of Japan (IEIJ), UVlamp, In: Lighting Handbook, OHMSHA, Tokyo, 2006, pp. 501–504.
  28. NASA Goddard Earth Science Data and Information Services Centre (GES DISC), Ozone Production and Destruction, 2015,, accessed 15 January 2016.
  29. Japan Ozone Association (JOA), Advanced oxidation processes, In: Ozone Handbook, Japan Ozone Association, Tokyo, 2009, pp. 96–98.
  30. Japan Scientific Society Press (JSSP), Frontier orbital theory and Kenichi Fukui, Chemical Review No. 38, Japan Chemical Society, 1983.
  31. K. Fukui, K.T. Yonezawa, H. Shingu, A molecular orbital theory of reactivity in aromatic hydrocarbons, J. Chem. Phys., 20 (1952) 722–725.
  32. K. Fukui, T. Yonezawa, C. Nagata, MO-Theoretical approach to the mechanism of charge transfer in the process of aromatic substitutions, J. Chem. Phys., 27 (1957) 1247–1259.