1. Combined heating and power and emissions trading: options for policy makers, International Energy Agency, 2008, p. 27.
  2. I. Dincer, Renewable energy and sustainable development: a crucial review. Renew. Sustain. Energy Rev., 4(2) (2000) 157– 175.
  3. P. Ahmadi, I. Dincer, Exergo-environmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA) Energy, 35 (2010), 5161–5172.
  4. P. Ahmadi, M.A. Rosen, I. Dincer, Greenhouse gas emission and exergo-environmental analyses of a trigeneration energy system. Int. J. Greenhouse Gas Control, 5(6) (2011) 1540–1549.
  5. Z.H. Yao, Z.F. Wang, Z.W. Lu, X.D. Wei, Modeling and simulation of the pioneer 1 MW solar thermal central receiver system in China, Renewable Energy, 34 (2009) 2437–2446.
  6. X. Li, W.Q. Kong, Z.F. Wang, C. Chang, F.W. Bai, Thermal model and thermodynamic performance of molten salt cavity receiver, Renewable Energy, 35 (2010) 981–988.
  7. W. Han, H.G. Jin, J.F. Su, R.M. Lin, Z.F. Wang, Design of the first Chinese 1 MW solar-power tower demonstration plant, Int. J. Green Energy, 6 (2009) 414–425.
  8. P. Ahmadi, I. Dincer, Rosen M.A., Exergo-environmental analysis of a tri-generation system based on micro gas turbine and organic Rankine cycles. In: Proceedings of the global conference on global warming 2011, Lisbon, Portugal; 11–14 July 2011.
  9. L.M. Serra, M.A. Lozano, J. Ramos, A.V. Ensinas, S.A. Nebra, Poly-generation and efficient use of natural resources. Energy, 34 (2009) 575–586.
  10. J.D. Nixon, P.K. Dey, P.A. Davies. The feasibility of hybrid solar-biomass power plants in India, Energy, 46 (2012) 541– 554.
  11. H. Zhai, Y.J. Dai, J.Y. Wu, R.Z. Wang. Energy and energy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas. Appl. Energy, 86 (2009) 1395–1404.
  12. F.A. Al-Suleiman, I. Dincer, F. Hamdullahpur, Energy and exergy analyses of a biomass tri-generation system using an organic Rankine cycle, Energy, 45 (2012) 975–985.
  13. D. Maraver, J. Uche, J. Royo, Assessment of high temperature organic Rankine cycle engine for poly-generation with MED desalination: A preliminary approach, Energy Convers. Manage., 53 (2012) 108–117.
  14. Y. Wang, Y. Huang, E. Chiremba, A.P. Roskilly, N. Hewitt, Y. Ding, D. Wu, H. Yu, X. Chen, Y. Li, J. Huang, R. Wang, J. wu, Z. Xi, C. Tan, An investigation of a house hold size tri-generation running with hydrogen, Appl. Energy, 88 (2011) 2176–2182.
  15. C. Ugur, K. Comakli, F. Yuksel, The role of co-generation systems in sustainability of energy, Energy Convers. Manage., 63 (2012) 196–202.
  16. M. Kanoglu, I. Dincer, d M.A. Rosen, Understanding energy and exergy efficiencies for improved energy management in power plants, Energy Policy, 35 (2007) 3967–3978.
  17. I. Dincer, and M.A. Rosen, Exergy, Energy, Environment and Sustainable Development, Elsevier, 2nd ed., 2013, p. 537.
  18. I. Dincer, and H. Al-Muslim, Thermodynamic analysis of reheat cycle steam power plants. Int. J. Energy Res. 25 (2001) 727–739.
  19. E. Minciuc, O. Le Corre, V. Athanasovici, M. Tazerout, I. Bitir, Thermodynamic analysis of tri-generation with absorption chilling machine. Appl. Thermal Eng., 23 (2003) 1391–1405.
  20. P. Ahmadi, I. Dincer, M.A. Rosen. Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration, Energy Convers. Manage., (2012) 447–453.
  21. M. Ameri, A. Behbahaninia, A. Abbas Tanha, Thermodynamic analysis of a tri-generation system based on micro-gas turbine with a steam ejector refrigeration system Energy, 35(5) (2010) 2203–2209.
  22. H. Li, L. Fu, K. Geng, Y. Jiang, Energy utilization evaluation of CCHP systems, Energy Buildings, 38(3) (2006) 253–257.
  23. E. Cardona, and A. Piacentino, A methodology for sizing a trigeneration plant in Mediterranean areas, Appl. Thermal Eng., 23(13) (2003) 1665–1680.
  24. A.M. E1-Nashar, Cogeneration for power and desalination - State of the art review, Desalination, 134 (2001) 7–28.
  25. A.M. Helal, Hybridization - a new trend in desalination, Desal. Wat. Treat., 3 (2009) 120–135.
  26. G.M. Zak, A. Ghobeity, M.H. Sharqawy, A. Mitsos, A review of hybrid desalination systems for co-production of power and water: analyses, methods, and considerations, Desal. Wat. Treat., 51 (2013) 5381–5401.
  27. P. Palenzuela, G. Zaragoza, D.C. Alarcón-Padilla, J. Blanco, Evaluation of cooling technologies of concentrated solarpower plants and their combination with desalination in the Mediterranean area, Appl. Thermal Eng., 50(2) (2013) 1514–1521.
  28. Y. Zhao, A. Akbarzadeh, J. Andrews, Simultaneous desalination and power generation using solar energy, Renewable Energy, 34(2) (2009) 401–408.
  29. P. Palenzuela, G. Zaragoza, D.C. Alarcón-Padilla, E. Guillén, M. Ibarra, J. Blanco, Assessment of different configurations for combined parabolic-trough (PT) solar power and desalination plants in arid regions, Energy, 36(8) (2011) 4950–4958.
  30. B.F. Tchanche, G. Papadakis, G. Lambrinos, A. Frangoudakis, Fluid selection for a low-temperature solar organic Rankine cycle, Appl. Thermal Eng., 29 (2009) 2468–2476.
  31. G. Pei, L. Jing, J. Ji, Analysis of low temperature solar thermal electric generation using regenerative organic Rankine cycle, Appl. Therm. Eng., 30 (2010) 998–1004.
  32. “Sky Trough @Fact sheet 2011”.
  33. Therminol. Heat transfer fluids by Solutia Inc., Therminol VP-1.; Aug. 2012.
  34. M.J. Montes, A. Abanades, J.M. Martinez-Val, Performance of a direct steam generation solar thermal power plant for electricity production as a function of the solar multiple. Sol Energy, 83 (2009) 679–689.
  35. S. Kalogirou, Solar energy engineering: processes and systems, Elsevier, (2009) p. 760.
  36. S.A. Klein, Engineering equation solver (EES), Academic commercial Version 9.725, F-chart; 2014.
  37. S. Kalogirou, Solar thermal collectors and applications, Progr. Energy Combust. Sci., 30 (2004) 231–295.
  38. J. Duffie, W. Beckman, Solar engineering of thermal processes, John Wiley & Sons, Inc., Fourth edition (2013) p. 910.
  39. H. El-Dessouky, I. Alatiqi, S. Bingulac, H. Ettouney, Steadystate analysis of the multiple effect evaporation desalination process, Chem. Eng. Technol., (1998) 437–451.
  40. K.H. Mistry, M.A. Antar, J.H. Lienhard V, An improved model for the multiple effect distillation, Desal.Wat. Treat., 51 (2013) 807–821.
  41. R.K. Kamali, A. Abbassi, S.A. Sadough Vanini, M. Saffar Avval, Thermodynamic design and parametric study of MED-TVC, Desalination, 222 (2008) 596–604.
  42. D. Zhao, J. Xue, Shi Li, H. Sun, Q. Zhang, Theoretical analyses of thermal and economical aspects of multi-effect distillation desalination dealing with high-salinity wastewater, Desalination, 273 (2011) 292–298.
  43. Y.A. Cengel, M.A.Boles, Thermodynamics: An Engineering Approach, 6th ed., Mc Graw Hill, 2007, 976 p.
  44. A. Bejan, G. Tsatsaronis, M. Moran, Thermal Design and oOptimization, John Wiley and Sons, 1996, 542 p.
  45. C. Kutscher, F. Burkholder, K. Stynes, Generation of Parabolic Trough Collector Efficiency curve from Separate measurements of outdoor optical efficiency and indoor receiver heat loss, National Renewable Energy Laboratory Presented at Solar PACES 2010 Perpignan, France, p. 7.
  46. H.D. Madhawa-Hettiarachchi, M. Golubovic, W.M. Worek, Y. Ikegami, Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources. Energy, 32(9) (2007) 1698–1706.
  47. M. Balghouthi, M.H. Chahbani, A. Guizani. Feasibility of solar absorption air conditioning in Tunisia. Building Environ., 43 (2008) 1459–1470.