1. A.K. Krishna, M. Satyanarayanan, P.K. Govil, Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak District, Andhra Pradesh, India, J. Hazard Mater., 167 (2009) 366–373.
  2. G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: a short review of recent developments, J. Hazard. Mater., 160 (2008) 265–288.
  3. G. Nota, C. Improta, Determination on CN- in coke-oven wastewater, Water Res., 13 (1979) 177–179.
  4. R.R. Dash, A. Gaur, C. Balomajumder, Cyanide in industrial wastewaters and its removal: a review on biotreatment, J. Hazard. Mater., 163 (2009) 1–11.
  5. W. Kujawski, A. Warszawski, W. Ratajczak, T. Porebski, W. Capala, Removal of phenol from wastewater by different separation techniques, Desalination, 163 (2004) 287–296.
  6. S.A.K. Palmer, M.A. Breton, T.J. Nunno, D.M. Sullivan, N.F. Surprenant, Technical Resource Document: Treatment Technologies for Metal/Cyanide-Containing Wastes. Volume III, US EPA Rept. No. EPA-60O/S2-87/106, 1988.
  7. E. Pilon-Smits, Phytoremediation, Annu. Rev. Plant. Bio., 56 (2005) 15–39.
  8. P.R. Adler, R.A. Arora, A.E. Ghaouth, D.M. Glenn, J.M. Solar, Bioremediation of phenolic compounds from water with plant root surface peroxidases, J. Environ. Qual., 23 (1994) 1113–1117.
  9. M. Ebel, M.W.H. Evangelou, A. Schaeffer, Cyanide phytoremediation by water hyacinths (Eichhornia crassipes), Chemos., 66 (2007) 16–823.
  10. E.R. Indrayatie, E. Arisoesilaningsih, The potential of hydrophyte plants for remediation of liquid waste of tapioca factory, J. Deg. Min. Land. Manage., 2 (2015) 347–354.
  11. Y.M. Nor, Phenol removal by crassiepes in prescence of trace metals, Wat Res., 5 (1994) 1161–1166.
  12. N. Hafez, S. Abdalla, Y.S. Ramadan, Accumulation of phenol by potamogeton crispus from aqueous industrial waste, Bull. Environ. Contam. Toxicol., 60 (1998) 944–948.
  13. C. Ram, Y. Sangeeta, Potential of typha angustifolia for phytoremediation of heavy metals from aqueous solution of phenol and melanoidin, Eco. Eng., 36 (2010) 1277–1284.
  14. L.B. Paiva, J.G. Oliveira, R.A. Azevedo, D.R. Ribeiro, M.G.D. Silva, A.P. Vitoria, Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+, Environ. Exp. Bot., 65 (2009) 403–409.
  15. A. Gothberg, M. Greger, B. Bengtsson, Accumulation of heavy metals in water spinach (Ipomoea aquatic) cultivated in the Bangkok region,Thailand, Environ. Toxicol. Chem., 21 (2009) 1934–1939.
  16. B.C. Wolverton, M.M. Mckown, Water hyacinths for removal of phenols from polluted water, Aqu. Bot., 2 (1976) 191–201.
  17. S.A. Sharmin, I. Alam, K.H. Kim, Y.G. Kim, P.J. Kim, J.D. Bahk, B.H. Lee, Chromium-induced physiological and proteomic alterations in roots of miscanthussinensis, Plant. Sci., 187 (2012) 113–126.
  18. D.R. Hoagland, D.I. Arnon, The water-culture method for growing plantswithout soil, Circular Calif. Agric. Exp. Station., 347 (1950) 32.
  19. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed, American Public Health Association, Washington, D.C., 2001.
  20. M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for determination of sugars and related substances, Anal. Chem., 28 (1956) 350–356.
  21. O.H. Lowry, N.J. Rosebraugh, A.L. Farr, R.J. Randall, Protein measurement with folin–phenol reagent, J. Biol. Chem., 193 (1951) 265–275.
  22. M.M. Bradford, A rapid and sensitive method for the quantitation ofmicrogram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72 (1976) 248–254.
  23. S. Maclachalam, S. Zalik, Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll mutant of barley, Can. J. Bot., 41 (1963) 1053–1062.
  24. M.A. Maine, M.V. Duarte, N.L. Sune, Cadmium uptake by floating macrophytes, Wat. Res., 35 (2001) 2629–2634.
  25. S. Singh, J.S. Melo, S. Eapen, S.F. D’souza, Potential of vetiver (Vetiveriazizanoides L. Nash) for phytoremediation of phenol, Ecotoxicol. Environ. Saf., 71 (2008) 671–676.
  26. V.C. Pandey, Invasive species based efficient green technology for phytore-mediation of fly ash deposits, J. Geochem. Explor., 123 (2012) 13–18.
  27. P.H. Nye, P.B. Tinker, Solute Movement in the Soil Root System, Blackwell Scientific Publication, 1977.
  28. G.A. Roshani, G. Narayanasamy, Determination of kinetic parameters for potassium uptake by wheat at different growth stages, Inter. J. Plant. Prod., 4 (2010) 8043.
  29. S. Trapp, K.C. Zambrano, K.O. Kusk, U. Karlson, A phytotoxicity test using transpiration of willows, Arch. Environ. Contam. Toxicol., 39 (2000) 154–160.
  30. N. Singh, C. Balomajumder, Continuous packed bed adsorption of phenol and cyanide onto modified rice husk: an experimental and modeling study, Desal. Wat. Treat., (2016) 1–15.
  31. H.E. Reynel-Avila, D.I. Mendoza-Castillo, V. Hernandez-Montoya, A.B. Petriciolet, Multicomponent Removal of Heavy Metals from Aqueous Solution Using Low-Cost Sorbents, Water Production and Wastewaters Treatment, Nova Science Publisher, 2011, pp. 69–99.
  32. A.H. Scragg, The effect of phenol on the growth of chlorella vulgaris and chlorella VT-1, Enzyme. Microb. Technol., 39 (2006) 796–799.
  33. B. Dhir, P. Sharmila, P.P. Saradhi, Potential of aquatic macrophytes for removing contaminants from the environment, Crit. Rev. Environ. Sci. Technol., 39 (2009) 1–28.
  34. L. Sanita de tappi, R. Gabbrielli, Responses to zinc in higher plants, Environ. Exp. Bot., 41 (1999) 105–130.
  35. A. Gupta, C. Balomajumder, Removal of Cr(VI) and phenol using water hyacinth from single and binary solution in the artificial photosynthesis chamber, J. Wat. Pro. Engg., 7 (2015) 74–82.
  36. L. Jacobson, R. Overstreet, H.M. King, R. Handley, The effect of pH and temperature on the absorption of potassium and bromide by barley roots, Pla. Physio., 37 (1962) 821–825.
  37. B.S. Smolyakov, A.P. Ryzhikh, S.B. Bortnikova, O.P. Saeva, N.Y. Chernova, Behavior of metals (Cu, Zn and Cd) in the initial stage of water system contamination: effect of pH and suspended particles, App. Geochem., 25 (2010) 1153–1161.
  38. K. Maxwell, G.N. Johnson, Chlorophyll fluorescence a practical guide, J. Exp. Bot., 51 (2000) 659–668.
  39. H. Cheng, W. Xu, L. Liu, Q. Zhao, G. Chen, Application of composted sewage sludge (CSS) as s soil amendment for turf grass growth, Ecol. Eng., 29 (2007) 96–104.
  40. Y. Xiao-Zhang, G. Ji-Dong, L. Luan, Assimilation and physiological effects of ferrocyanide on weeping willows, Ecotoxic. Environ. Saf., 71 (2008) 609–615.
  41. R. Chandra, S. Yadav, Potential of Typha angustifolia for phytoremediation of heavy metals from aqueous solution of phenol and melanoidin, Ecol. Eng., 36 (2010) 1277–1284.
  42. L.Q. Ma, K.M. Komar, C. Tu, W. Zhang, Y. Cai, A fern that hyper accumulates arsenic, Nat., 409 (2001) 579.
  43. A.J.M. Baker, P.L. Walker, Ecophysiology of Metal Uptake by Tolerant Plants, A.J. Shaw (Ed.), Heavy Metal Tolerance in Plants: Evolutionary Aspects, CRC Press, Boca Raton, FL, 1990, p. 155.