References

  1. F.A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol., C, 1 (2000) 1–21.
  2. P. Jiang, W. Xiang, J. Kuang, W. Liu, W. Cao, Effect of cobalt doping on the electronic, optical and photocatalytic properties of TiO2, Solid State Sci., 46 (2015) 27–32.
  3. Y. Jiaguo, C.Y.U. Jimmy, B. Cheng, X. Zhao, Photocatalytic activity and characterization of the sol-gel derived Pb-doped TiO2 thin films, J. Sol-Gel Sci. Technol., 24 (2002) 39–48.
  4. P. Bouras, E. Stathatos, P. Lianos, Pure versus metal-ion-doped nanocrystalline titania for photocatalysis, Appl. Catal., B, 73 (2007) 51–59.
  5. F. Sayilkan, M. Asilturk, P. Tatar, N. Kiraz, S. Sener, E. Arpac, H. Sayilkan, Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights, Mat. Res. Bull., 43 (2008) 127–134.
  6. J. Liqiang, S. Xiaojun, X. Baifu, W. Baiqi, C. Weimin, F. Honggang, The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity, J. Solid State Chem., 177 (2004) 3375–3382.
  7. M. Kang, Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol, J. Mol. Catal. A: Chem., 197 (2003) 173–183.
  8. B.Y. Lee, S.H. Park, M. Kang, S.C. Lee, S.J. Choung, Preparation of Al/TiO2 nanometer photo-catalyst film and the effect of H2O addition on photo-catalytic performance for benzene removal, Appl. Catal., A, 253 (2003) 371–380.
  9. M.K. Seery, R. George, P. Floris, S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol., A, 189 (2007) 258–263.
  10. J. Zhou, Y. Zhang, X.S. Zhao, A.K. Ray, Photodegradation of benzoic acid over metal-doped TiO2, Ind. Eng. Chem. Res., 45 (2006) 3503–3511.
  11. S.S. Lee, H.J. Kim, K.T. Jung, H.S. Kim, Y.G. Shul, Photocatalytic activity of metal ion (Fe or W) doped titania, Korean J. Chem. Eng., 18 (2001) 914–918.
  12. N. Sobana, M. Muruganadham, M. Swaminathan, Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes, J. Mol. Catal. A: Chem., 258 (2006) 124–132.
  13. J.C.S. Wu, C.H. Chen, A visible-light response vanadium-doped titania nanocatalyst by sol–gel method, J. Photochem. Photobiol., A, 163 (2004) 509–515.
  14. M. Subramanian, S. Vijayalakshmi, S. Venkataraj, R. Jayavel, Effect of cobalt doping on the structural and optical properties of TiO2 films prepared by sol–gel process, Thin Solid Films, 516 (2008) 3776–3782.
  15. Y. Yang, X. Li, J. Chen, L. Wang, Effect of doping mode on the photocatalytic activities of Mo/TiO2, J. Photochem. Photobiol., A, 163 (2004) 517–522.
  16. J. Lee, W. Choi, Effect of platinum deposits on TiO2 on the anoxic photocatalytic degradation pathways of alkylamines in water: dealkylation and N-alkylation, Environ. Sci. Technol., 38 (2004) 4026–4033.
  17. S. Kim, S. Hwang, W. Choi, Visible light active platinum-ion-doped TiO2 photocatalyst, J. Phys. Chem. B, 109 (2005) 24260–24267.
  18. Y. Wang, H. Cheng, L. Zhang, Y. Hao, J. Ma, B. Xu, W. Li, The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 nanoparticles, J. Mol. Catal. A: Chem., 151 (1999) 205–216.
  19. W. Hung, S. Fu, J. Tseng, H. Chu, T. Ko, Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol–gel method, Chemosphere, 66 (2007) 2142–2151.
  20. N. Venkatachalam, M. Palanichamy, B. Arabindoo, V. Murugesan, Enhanced photocatalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2, J. Mol. Catal. A: Chem., 266 (2007) 158–165.
  21. J. Zhou, M. Takeuchi, A.K. Ray, M. Anpo, X.S. Zhao, Enhancement of photocatalytic activity of P25 TiO2 by vanadium-ion implantation under visible light irradiation, J. Colloid Interface Sci., 311 (2007) 497–501.
  22. Y. Zhang, H. Zhang, Y. Xu, Y. Wang, Europium doped nanocrystalline titanium dioxide: preparation, phase transformation and photocatalytic properties, J. Mater. Chem., 13 (2003) 2261–2265.
  23. J. Chen, M. Yao, X. Wang, Investigation of transition metal ion doping behaviors on TiO2 nanoparticles, J. Nanopart. Res., 10 (2008) 163–171.
  24. S. Liu, X. Chen, A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation, J. Hazard. Mater., 152 (2008) 48–55.
  25. M. Crisan, A. Braileanu, M. Raileanu, M. Zaharescu, D. Crisan,N. Dragan, M. Anastasescu, A. Ianculescu, I. Nitoi, V.E.Marinescu, S.M. Hodorogea, TiO2-based nanomaterials with photocatalytic properties for the advanced degradation of xenobiotic compounds from water. A literature survey, Water, Air , Soil Pollut., 224 (2013) 1–45.
  26. D. Jiang, Y. Xu, B. Hou, D. Wu, Y. Sun, Synthesis of visible light-activated TiO2 photocatalyst via surface organic modification, J. Solid State Chem., 180 (2007) 1787–1791.
  27. R.S. Sonawane, B.B. Kale, M.K. Dongare, Preparation and photo-catalytic activity of Fe–TiO2 thin films prepared by sol–gel dip coating, Mater. Chem. Phys., 85 (2004) 52–57.
  28. N. Venkatachalam, M. Palanichamy, V. Murugesan, Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient photocatalytic degradation of 4-chlorophenol, J. Mol. Catal. A: Chem., 273 (2007) 177–185.
  29. H. Luo, C. Wang, Y. Yan, Synthesis of mesostructured titania with controlled crystalline framework, Chem. Mater., 15 (2003) 3841–3846.
  30. H. Ogawa, A. Abe, Preparation of tin oxide films from ultrafine particles, J. Electrochem. Soc., 128 (1981) 685–689.
  31. K.V. Baiju, P. Shajesh, W. Wunderlich, P. Mukundan, S.R. Kumar, K.G.K. Warrier, Effect of tantalum addition on anatase phase stability and photoactivity of aqueous sol–gel derived mesoporous titania, J. Mol. Catal. A: Chem., 276 (2007) 41–46.
  32. K.M.K. Srivatsa, M. Bera, A. Basu, Pure brookite titania crystals with large surface area deposited by plasma enhanced chemical vapour deposition technique, Thin Solid Films, 516 (2008) 7443–7446.
  33. Q. Chen, F. Ji, T. Liu, P. Yan, W. Guan, X. Xu, Synergistic effect of bifunctional Co–TiO2 catalyst on degradation of Rhodamine B: Fenton-photo hybrid process, Chem. Eng. J., 229 (2013) 57–65.
  34. T. Preethi, B. Abarna, K.N. Vidhya, G.R. Rajarajeswari, Sol–gel derived cobalt doped nano-titania photocatalytic system for solar light induced degradation of crystal violet, Ceram. Int., 40 (2014) 13159–13167.
  35. A. Kaushi, B. Dalela, S. Kumar, P.A. Alvi, S. Dalela, Role of Co doping on structural, optical and magnetic properties of TiO2, J. Alloys Compd., 552 (2013) 274–278.
  36. M. Khan, W. Cao, Cationic (V, Y)-codoped TiO2 with enhanced visible light induced photocatalytic activity: a combined experimental and theoretical study, J. Appl. Phys., 114 (2013) 183514.
  37. L. Xiu-Hua, H. Xiao-Bo, F. Yi-Bei, Effects of doping cobalt on the structures and performances of TiO2 photocatalyst, Acta Chim. Sinica, 66 (2008) 1725–1730.
  38. M. Hamadanian, A. Reisi-Vanani, A. Majedi, Sol-gel preparation and characterization of Co/TiO2 nanoparticles: application to the degradation of methyl orange, J. Iran. Chem. Soc., 7 (2010) 52–58.
  39. M. Hamadanian, A. Sadeghi Sarabi, A. Mohammadi Mehra, V. Jabbari, Photocatalyst Cr-doped titanium oxide nanoparticles: fabrication, characterization, and investigation of the effect of doping on methyl orange dye degradation, Mater. Sci. Semicond. Process, 21 (2014) 161–166.
  40. M. Hamadanian, V. Jabbari, M. Asad, M. Shamshiri, I. Mutlay, Preparation of novel hetero-nanostructures and high efficient visible light-active photocatalyst using incorporation of CNT as an electron-transfer channel into the support TiO2 and PbS, J. Taiwan Inst. Chem. Eng., 44 (2013) 748–757.
  41. S. Mugundan, B. Rajamannan, G. Viruthagiri, N. Shanmugam, R. Gobi, P. Praveen, Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique, Appl. Nanosci., 5 (2015) 449–456.
  42. G. Sadanandam, K. Lalitha, V.D. Kumari, M.V. Shankar, M. Subrahmanyam, Cobalt doped TiO2: a stable and efficient photocatalyst for continuous hydrogen production from glycerol: water mixtures under solar light irradiation, Int. J. Hydrogen Energy, 38 (2013) 9655–9664.
  43. I. Ganesh, A.K. Gupta, P.P. Kumar, P.S. Chandra Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications, Mater. Chem. Phys., 135 (2012) 220–234.
  44. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38 (2009) 253–278.
  45. A. Di Paola, E. García-López, S. Ikeda, G. Marcì, B. Ohtani, L. Palmisano, Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2, Catal. Today, 75 (2002) 87–93.
  46. A. Daghetti, G. Lodi, S. Trasatti, Interfacial properties of oxides used as anodes in the electrochemical technology, Mater. Chem. Phys., 8 (1983) 1–90.
  47. C. Contescu, V.T. Popa, J.A. Schwarz, Heterogeneity of hydroxyl and deuteroxyl groups on the surface of TiO2 polymorphs, J. Colloid Interface Sci., 180 (1996) 149–161.
  48. W.T. Geng, K.S. Kim, Interplay of local structure and magnetism in Co-doped TiO2 anatase, Solid State Commun., 129 (2004) 741–746.
  49. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  50. M. Subramanian, S. Vijayalakshmi, S. Venkataraj, R. Jayavel, Effect of cobalt doping on the structural and optical properties of TiO2 films prepared by sol–gel process, Thin Solid Films, 516 (2008) 3776–3782.
  51. Y.J. Lin, Y.H. Chang, W.D. Yang, B.S. Tsai, Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified Pechini method, J. Non-Cryst. Solids, 352 (2006) 789–794.
  52. G.W. Zhou, D.K. Lee, Y.H. Kim, C.W. Kim, Y.S. Kang, Preparation and spectroscopic characterization of ilmenite-type CoTiO3 nanoparticles, Bull. Korean Chem. Soc., 27 (2006) 368–372.
  53. R.A. Oaxaca, J.J. Becerril, Titanium oxide modification with oxides of mixed cobalt valence for photocatalysis, J. Mex. Chem. Soc., 54 (2010) 164–168.
  54. B.M. Reddy, I. Ganesh, Characterization of La2O3-TiO2 and V2O5/La2O3-TiO2 catalysts and their activity for synthesis of 2,6-dimethylphenol, J. Mol. Catal. A: Chem., 169 (2001) 207–223.
  55. B.M. Reddy, I. Ganesh, E.P. Reddy, A. Fernández, P.G. Smirniotis, Surface characterization of Ga2O3−TiO2 and V2O5/Ga2O3−TiO2 catalysts, J. Phys. Chem. B, 105 (2001) 6227–6235.
  56. S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, V. Murugesan, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Res., 38 (2004) 3001–3008.
  57. K. Nagaveni, M.S. Hegde, G. Madras, Structure and photocatalytic activity of Ti1-xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method, J. Phys. Chem. B, 108 (2004) 20204–20212.
  58. W. Zhou, Q. Liu, Z. Zhu, J. Zhang, Preparation and properties of vanadium-doped TiO2 photocatalysts, J. Phys. D: Appl. Phys., 43 (2010) 035301.