References

  1. M. Stec, A. Tatarczuk, L. Więcław-Solny, A. Krótki, M. Ściążko, S. Tokarski, Pilot plant results for advanced CO2 capture process using amine scrubbing at the Jaworzno II Power Plant in Poland, Fuel, 151 (2015) 50–56.
  2. Ł. Bartela, A. Skorek-Osikowska, J. Kotowicz, An analysis of the investment risk related to the integration of a supercritical coal-fired combined heat and power plant with an absorption installation for CO2 separation, Applied Energy, 156 (2015) 423–435.
  3. A. Skorek-Osikowska, Ł. Bartela, J. Kotowicz, Thermodynamic and economic evaluation of a CO2 membrane separation unit integrated into a supercritical coal-fired heat and power plant, Journal of Power Technologies, 95 (2015) 201–210.
  4. K. Stępczyńska-Drygas, H. Łukowicz, S. Dykas, Calculation of an advanced ultra-supercritical power unit with CO2 capture installation, Energy Convers. Manage., 74 (2013), 201–208.
  5. R. Strube, G. Manfrida, CO2 capture in coal-fired power plants – impact on plant performance, Int. J. Greenh. Gas Con., 5 (2011) 710–726.
  6. A. Skorek-Osikowska, J. Kotowicz, K. Janusz-Szymańska, Comparison of the energy intensity of the selected CO2 capture methods applied in the ultra-supercritical coal power plants, Energy Fuels, 11 (2012) 6509–6517.
  7. W. Nowak, M. Chorowski, T. Czakiert. (Eds), Oxy-fuel combustion for pulverized and fluidized coal boiler integrated with CO2 capture. Production of oxygen for oxy-combustion purposes. Częstochowa University of Technology publishing house, Częstochowa, 2014.
  8. A. Ziębik, P. Gładysz, Thermoecological analysis of an oxy-fuel combustion power plant integrated with a CO2 processing unit, Energy, 88 (2015) 37–45
  9. T. Burdyny, H. Struchtrup, Hybrid membrane/cryogenic separation of oxygen from air use in the oxy-fuel process, Energy, 35 (2010) 1884–1897.
  10. M. Chorowski, Cryogenics, Fundamentals and Applications. IPPU Masta, 2010.
  11. Grasys, Oxygen Adsorption Plants and Stations [Online], 2015. Available from: http://www.grasys.com/upload/iblock/8d3/oxygen_adsorption_plants_and_stations.pdf [Accessed on 7 December 2016].
  12. M. Bodzek, J. Bohdziewicz, K. Konieczny, Membrane techniques in environmental protection. Silesian University of Technology publishing house, Gliwice 1997.
  13. R.W. Baker, K., Lokhandwala, Natural gas processing with membranes: an overview, Ind. Eng. Chem. Res., 47 (2008) 2109– 2121.
  14. P. Li, H. Ch. Chen, T.S. Chung, The effects of substrate characteristics and pre-wetting agents on PAN–PDMS composite hollow fiber membranes for CO2/N2 and O2/N2 separation, J. Membr. Sci., 434 (2013) 18–25.
  15. W.F. Yong, F.Y. Li, Y. Ch. Xiao., T.S. Chung, Y.W. Tong, High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation, J. Membr. Sci., 443 (2103) 156–169.
  16. S. Berdowska, Effect of membrane-cryogenic air separation technology and a CCS installation on the effectiveness of an ultra supercritical pulverized coal-fired boiler. Ph.D. thesis, Institute of Power Engineering and Turbomachinery, Silesian University of Technology, Gliwice 2015.
  17. A. Skorek-Osikowska, Ł. Bartela, J. Kotowicz, A comparative thermodynamic, economic and risk analysis concerning implementation of oxy-combustion power plants integrated with cryogenic and hybrid air separation units, Energ. Convers. Manage., 92 (2015) 421–430.
  18. N. Li, A. Fane, W. Ho, T. Matsuura, Advanced Membrane Technology and Applications, John Wiley & Sons, Hoboken, 2008.
  19. J. Kotowicz, T. Chmielniak, K. Janusz-Szymańska, The influence of membrane CO2 separation on the efficiency of a coal – fired power plant, Energy, 35 (2010) 841–850.
  20. J. Kotowicz, S. Michalski, Effi ciency analysis of a hard-coal-fired supercritical power plant with a four-end high-temperature membrane for air separation, Energy, 64 (2014) 109–119.
  21. J. Kotowicz, S. Michalski, Influence of four-end HTM parameters on the thermodynamic and economic characteristics of a supercritical power plant, Energy, 81 (2015) 662–673.