1. N. Epstein, Fouling in Heat Exchangers, In: Proc. of the 6th Int. heat transfer conference, 1978, pp. 235–253.
  2. E. Dalas, P.G. Koutsoukos, The effect of magnetic fields on calcium carbonate scale formation, J. Cryst. Growth, 96 (1989) 802–806.
  3. S. Kobe, G. Dražić, A.C. Cefalas, E. Sarantopoulou, J. Stražišar, Nucleation and crystallization of CaCO3 in applied magnetic fields, Cryst. Eng., 5 (2002) 243–253.
  4. F. Alimi, M. Tlili, M. Ben Amor, C. Gabrielli, G. Maurin, Influence of magnetic field on calcium carbonate precipitation, Desalination, 206 (2007) 163–168.
  5. X. Miao, L. Xiong, J. Chen, Z. Yang, W. He, Experimental study on calcium carbonate precipitation using electromagnetic field treatment, Water Sci. Technol., 67 (2013) 2784–2790.
  6. H.F. An, Z.A. Liu, J.D. Zhao, X. Zhang, S. Long, J. Zhao, T. Xia, X. Zhang, Scale inhibition effects and mechanism of high voltage electrostatic fields in thermal power plant circulating cooling water system, Chin. J. Environ. Eng., 7 (2013) 4295–4299 (in Chinese).
  7. J.D. Zhao, Z.A. Liu, E.J. Zhao, Combined effect of constant high voltage electrostatic field and variable frequency pulsed electromagnetic field on the morphology of calcium carbonate scale in circulating cooling water systems, Water Sci. Technol., 70 (2014) 1074–1082.
  8. S.H. Lee, A Study of Physical Water Treatment Technology to Mitigate the Mineral Fouling in a Heat Exchanger, PhD Thesis, Drexel University, Michigan, USA, 2002.
  9. L. Jiang, J. Zhang, D. Li, Effects of permanent magnetic field on calcium carbonate scaling of circulating water, Desal. Wat. Treat., 53 (2013) 1275–1285.
  10. F. Alimi, M.M. Tlili, M. Ben Amor, G. Maurin, C. Gabrielli, Effect of magnetic water treatment on calcium carbonate precipitation: influence of the pipe material, Chem. Eng. Process., 48 (2009) 1327–1332.
  11. Y.M. Al-Roomi, K.F. Hussain, M. Al-Rifaie, Performance of inhibitors on CaCO3 scale deposition in stainless steel and copper pipe surface, Desalination, 375 (2015) 138–148.
  12. T.M. Pääkkönen, M. Riihimäki, C.J. Simonson, E. Muurinen, R.L. Keiski, Crystallization fouling of CaCO3 – analysis of experimental thermal resistance and its uncertainty, Int. J. Heat Mass Transfer, 55 (2012) 6927–6937.
  13. T.M. Pääkkönen, M. Riihimäki, C.J. Simonson, E. Muurinen, R.L. Keiski, C Modeling CaCO3 crystallization fouling on a heat exchanger surface – definition of fouling layer properties and model parameters, Int. J. Heat Mass Transfer, 83 (2015) 84–98.
  14. N. Andritsos, A.J. Karabelas, Calcium carbonate scaling in a plate heat exchanger in the presence of particles, Int. J. Heat Mass Transfer, 46 (2003) 4613–4627.
  15. R. Liu, A Study of Fouling in a Heat Exchanger with an Application of an Electronic Anti-fouling Technology, Ph.D. Thesis, Drexel University, USA, 1999.
  16. M. Ferreux, Role d’un traitement magnétique sur la cristallogénèse du carbonate de calcium dans les eaus entartrantes, Ph.D. Thesis, Besancon, France, 1992.
  17. J.W. Mullin, Crystallization, Beijing: World Publishing Corporation, 2000, pp. 123–129.
  18. O. Lopez, P. Zuddas, D. Faivre, The influence of temperature and seawater composition on calcite crystal growth mechanisms and kinetics: implications for Mg incorporation in calcite lattice, Geochim. Cosmochim. Acta, 73 (2009) 337–347.
  19. S. Zhong, A. Mucci, Calcite precipitation in seawater using a constant addition technique: a new overall reaction kinetic expression. Geochim. Cosmochim. Acta, 57 (1993) 1409–1417.
  20. A. Mucci, Growth kinetics and composition of magnesian calcite overgrowths precipitated from seawater: quantitative influence of orthophosphate ions, Geochim. Cosmochim. Acta, 50 (1986) 2255–2265.
  21. A. Mucci, R. Canuel, S. Zhong, The solubility of calcite and aragonite in sulfate-free seawater and the seeded growth kinetics and composition of the precipitates at 250°C, Chem. Geol., 74 (1989) 309–320.
  22. A.E. Nielsen, Kinetics of Precipitation, Pergamon Press, New York, 1964, pp. 11–19.