1. D.R. Mount, R. Hockett, Use of toxicity identification evaluation methods to characterize, identify, and confirm hexavalent chromium toxicity in an industrial effluent, Water Res., 34 (2000) 1379–1385.
  2. K. Choi, P.G. Meier, Toxicity evaluation of metal plating wastewater employing the Microtox assay: a comparison with cladocerans and fish, Environ. Toxicol., 16 (2001) 136–141.
  3. M.C. Liu, C.M. Chen, H.Y. Cheng, H.Y. Chen, Y.C. Su, T.Y. Hung, Toxicity of different industrial effluents in Taiwan: a comparison of the sensitivity of Daphnia similis and Microtox, Environ. Toxicol., 17 (2002) 93–97.
  4. A. Baral, R. Engelken, W. Stephens, J. Farris, R. Hannigan, Evaluation of aquatic toxicities of chromium and chromiumcontaining effluents in reference to chromium electroplating industries, Arch. Environ. Contam. Toxicol., 50 (2006) 496–502.
  5. M.T. Saçan, I.A.B. Balcioğlu, A case study on algal response to raw and treated effluents from an aluminum plating plant and a pharmaceutical plant, Ecotoxicol. Environ. Saf., 64 (2006) 234–243.
  6. E. Kim, Y.R. Jun, H.J. Jo, S.B. Shim, J. Jung, Toxicity identification in metal plating effluent: implications in establishing effluent discharge limits using bioassays in Korea, Mar. Pollut. Bull., 57 (2008) 637–644.
  7. S. Gartiser, C. Hafner, C. Hercher, K. Kroenberger-Shafer, A. Paschke, Whole effluent assessment of industrial wastewater for determination of BAT compliance. Part 2: Metal surface treatment industry, Environ. Sci. Pollut. Res. Int., 17 (2010) 1149–1157.
  8. N. Perumalsamy, K. Arumugam, Enzymes activity in fish exposed to heavy metals and the electro-plating effluent at sublethal concentrations, Water Qual. Exposure Health, 5 (2013) 93–101.
  9. USEPA, Development Document for the Proposed Effluent Limitations Guidelines and Standards for the Metal Products and Machinery Point Source Category, United States Environmental Protection Agency, Washington, D.C., USA, 2000.
  10. CONSEMA, Provides for the Definition of Criteria and Emission Standards for Toxicity of Liquid Effluents Released in Surface Waters of the State of Rio Grande do Sul, Resolution 129, State Council of the Environment, Porto Alegre, 2006.
  11. CONSEMA, Provides for an Extension of the Term to Comply with Article 9 of Resolution CONSEMA 129/2006, Which Defines Criteria and Emission Standards for Toxicity of Liquid Effluents Released in Surface Waters of the State of Rio Grande do Sul, Resolution 251, State Council for the Environment, Porto Alegre, 2010.
  12. A. Arenzon, T.P. Neto, W. Gerber, Manual on Toxicity in Industrial Effluents, Federation of Industries of the State of Rio Grande do Sul, Environment Council, Porto Alegre, 2011.
  13. USEPA, Generalized Methodology for Conducting Industrial Toxicity Reduction Evaluations (TREs), United States Environmental Protection Agency, Cincinnati, 1989.
  14. P.W. Lankford, Toxicity in Industrial Wastewater, P.W. Lankford, W.W. Eckenfelder Jr., Eds., Toxicity Reduction in Industrial Effluents, Van Nostrand Reinhold, New York, 1990, pp. 1–17.
  15. J. Sun, Y. Quan, W. Wang, S. Zheng, X. Liu, Potential contribution of inorganic ions to whole effluent acute toxicity and genotoxicity during sewage tertiary treatment, J. Hazard. Mater., 295 (2015) 22–28.
  16. G. Tchobanoglous, F.L. Burton, H.S. Stensel, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, New York, 2003.
  17. T.A. Kurniawan, G.Y.S. Chana, W.H. Lo, S. Babel, Physicochemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J., 118 (2006) 83–98.
  18. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  19. Q. Chang, G. Wang, Study on the macromolecular coagulant PEX which trap heavy metals, Chem. Eng. Sci., 62 (2007) 4636–4643.
  20. R.M. Machado, L.O. Monteggia, A. Arenzon, A.C. Curia, Assessment of the toxicity of wastewater from the metalworking industry treated using a conventional physico-chemical process, Environ. Monit. Assess., 188 (2016) 373.
  21. N. Sapari, A. Idris, N.H.A. Hamid, Total removal of heavy metal from mixed plating rinse wastewater, Desalination, 106 (1996) 419–422.
  22. R.M. Machado, Characterization and Evaluation of the Reduction of the Effluent Toxicity of a Metal-Mechanical Industry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil, 2014.
  23. ABNT, Aquatic Ecotoxicology – Preservation and Handling of Samples, NBR 15469:07, Associação Brasileira de Normas Técnicas, Rio de Janeiro, 2007.
  24. ABNT, Preservation and Sampling Techniques of Wastewater and Receiving Bodies, NBR 9898:87, Associação Brasileira de Normas Técnicas, Rio de Janeiro, 1987.
  25. APHA, American Public Health Association, Standard Methods for the Examination of Water and Wastewater, Public Health Association/American Water Works Association/Water Environment Federation, Washington, D.C., USA, 2012.
  26. ABNT, Waters – Determination of Nitrate – Chromotropic Acid and Phenoldissulfonic Acid Methods – Method of Test, NBR 12620:92, Associação Brasileira de Normas Técnicas, Rio de Janeiro, 1992.
  27. ABNT, General Requirements for the Competence of Testing and Calibration Laboratories, NBR ISO/IEC 17025, Associação Brasileira de Normas Técnicas/International Standardization Organization/International Electrotechnical Commission, Rio de Janeiro, 2005.
  28. ABNT, Aquatic Ecotoxicology – Chronic Toxicity – Method of Test with Green Algae (Chlorophyceae), NBR 12648:11, Associação Brasileira de Normas Técnicas, Rio de Janeiro, 2011.
  29. ABNT, Aquatic Ecotoxicology – Acute Toxicity – Test with Daphnia spp. (Cladocera, Crustacea), NBR 12713:09, Associação Brasileira de Normas Técnicas, Rio de Janeiro, 2009.
  30. ABNT, Aquatic Ecotoxicology – Acute Toxicity – Test with Fish, NBR 15088:11, Associação Brasileira de Normas Técnicas, Rio de Janeiro, 2011.
  31. M.A. Aragão, R.P.A. Araújo, Methods of Toxicity Tests with Aquatic Organisms, P.A. Zagatto, E. Bertoletti, Eds., Aquatic Ecotoxicology, Principles and Applications, Rima Publishing, São Carlos, 2008, pp. 117–147.
  32. USEPA, Toxicity Identification Evaluations: Characterization of Chronically Toxic Effluents, Phase I, United States Environmental Protection Agency, Duluth, 1992.
  33. W.L. Goodfellow, L.W. Ausley, D.T. Burton, D.L. Denton, P.B. Dorn, D.R. Grothe, M.A. Heber, T.J. Norberg-King, J.H. Rodgers, Major ion toxicity in effluents: a review with permitting recommendations, Environ. Toxicol. Chem., 19 (2000) 175–182.
  34. H.J. Jo, E.J. Park, K. Cho, E.H. Kim, J. Jung, Toxicity identification and reduction of wastewaters from a pigment manufacturing factory, Chemosphere, 70 (2008) 949–957.
  35. G. Scott, R.L. Crunkilton, Acute and chronic toxicity of nitrate to fathead minnows (Pimephales promelas), Ceriodaphnia dubia, and Daphnia magna, Environ. Toxicol. Chem., 19 (2000) 2918–2922.
  36. USEPA, Development Document for Effluent Limitations Guidelines and Standards for the Metal Finishing Point Source Category, United States Environmental Protection Agency, Washington, D.C., USA, 1983.
  37. J.E. Ritcher, Results of Algal Toxicity Tests with Priority Pollutants, University of Wisconsin-Superior, Wisconsin, 1982.
  38. D.R.M. Passino, S.B. Smith, Acute bioassays and hazard evaluation of representative contaminants detected in great lakes fish, Environ. Toxicol. Chem., 6 (1987) 901–907.
  39. A.N. Yamane, M. Okada, R. Sudo, Inhibitory effects of laundry detergents on the growth of freshwater algae, Jpn. J. Water Pollut. Res., 7 (1984) 576–582.
  40. A. Solski, E. Erndt, An assessment of rokanol toxicity to a population and to an aquatic ecosystem, Pol. Arch. Hydrobiol., 34 (1987) 551–566.
  41. S.B. Moore, R.A. Diehl, J.M. Barnhardt, G.B. Avery, Aquatic toxicities of textile surfactants, Text. Chem. Color., 19 (1987) 29–32.
  42. L. Monser, N. Adhoum, Modified activated carbon for the removal of copper, zinc, chromium, and cyanide from wastewater, Sep. Purif. Technol., 26 (2002) 137–146.
  43. S.K. Ouki, R.D. Neufeld, R. Perry, Use of activated carbon for the recovery of chromium from industrial wastewaters, J. Chem. Technol. Biotechnol., 70 (1997) 3–8.
  44. J.W. Shim, S.M. Lee, B.S. Rhee, S.K. Ryu, Extended Abstracts, European Carbon Conference, British Carbons Group, Newcastle, 1996, pp. 242–243.
  45. R. Leyva-Ramos, L.A.B. Jacome, J.M. Barron, L.F. Rubio, R.M.G. Coronado, Adsorption of zinc(II) from an aqueous solution onto activated carbon, J. Hazard. Mater., 90 (2002) 27–38.
  46. F. Gode, E. Pehlivan, A comparative study of two chelating ionexchange resins for the removal of chromium(III) from aqueous solution, J. Hazard Mater., 100 (2003) 231–243.
  47. T.H. Eom, C.H. Lee, J.H. Kim, C.H. Lee, Development of an ion exchange system for plating wastewater treatment, Desalination, 180 (2005) 163–172.
  48. A. Papadopoulos, D. Fatta, K. Parperis, A. Mentzis, K.J. Haralambous, M. Loizidou, Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods, Sep. Purif. Technol., 39 (2004) 181–188.
  49. CONSEMA, Provides for the Establishment of Liquid Effluent Emission Standards for Emission Sources That Discharge Their Effluents into Surface Waters of the State of Rio Grande do Sul, Resolution 128, State Council for the Environment, Porto Alegre, 2006.
  50. R.J. Griffitt, J. Luo, J. Gao, J.C. Bonzongo, D.S. Barber, Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms, Environ. Toxicol. Chem., 27 (2008) 1972–1978.
  51. F.L. Mayer Jr., M.R. Ellersieck, Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals, Department of the Interior, Fish and Wildlife Service, Washington, D.C., USA, 1986.
  52. D.J. McCauley, L.T. Brooke, D.J. Call, C.A. Lindberg, Acute and Chronic Toxicity of Aluminum to Ceriodaphnia dubia at Various pH’s, University of Wisconsin-Superior, Wisconsin, 1986.
  53. R.L. Spehar, J.T. Fiandt, Acute and chronic effects of water quality criteria-based metal mixtures on three aquatic species, Environ. Toxicol. Chem., 5 (1986) 917–931.
  54. K.A.C. De Schamphelaere, F.M. Vasconcelos, D.G. Heijerick, F.M.G. Tack, K. Delbeke, H.E. Allen, C.R. Janssen, Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata, Environ. Toxicol. Chem., 22 (2003) 2454–2465.
  55. K.A.C. De Schamphelaere, S. Lofts, C.R. Janssen, Bioavailability models for predicting acute and chronic toxicity of zinc to algae, daphnids, and fish in natural surface waters, Environ. Toxicol. Chem., 24 (2005) 1190–1197.
  56. E.J. Van Genderen, J.R. Tomasso, S.J. Klaine, Influence of copper exposure on whole-body sodium levels in larval fathead minnows (Pimephales promelas), Environ. Toxicol. Chem., 27 (2008) 1442–1449.
  57. S.J. Markich, G.E. Batley, J.L. Stauber, N.J. Rogers, S.C. Apte, R.V. Hyne, K.C. Bowles, K.L. Wilde, N.M. Creighton, Hardness corrections for copper are inappropriate for protecting sensitive freshwater biota, Chemosphere, 60 (2005) 1–8.
  58. Q.H. Pickering, C. Henderson, The acute toxicity of some heavy metals to different species of warm water fishes, Air Water Pollut., 10 (1966) 453–463.
  59. D. Lind, K. Alto, S. Chatterton, Regional Copper-Nickel Study: Aquatic Toxicology Study, Minessota Environmental Quality Board, Minnesota, 1978.
  60. M. Erten-Unal, B.G. Wixson, N. Gale, J.L. Pitt, Evaluation of toxicity, bioavailability and speciation of lead, zinc and cadmium in mine/mill wastewaters, Chem. Speciation Bioavailability, 10 (1998) 37–46.
  61. X. Zhu, L. Zhu, Z. Duan, R. Qi, Y. Li, Y. Lang, Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage, J. Environ. Sci. Health, Part A, 43 (2008) 278–284.
  62. A. Sofyan, Toxicity of Metals to Green Algae and Ceriodaphnia dubia: The Importance of Water Column and Dietary Exposures, PhD Thesis, University of Kentucky, Lexington, 2004.
  63. C.Y. Chen, K.C. Lin, D.T. Yang, Comparison of the relative toxicity relationships based on batch and continuous algal toxicity tests, Chemosphere, 35 (1997) 1959–1965.
  64. N.M.E. Deleebeeck, K.A.C. De Schamphelaere, C.R. Janssen, Effects of Mg2+ and H+ on the toxicity of Ni2+ to the unicellular green alga Pseudokirchneriella subcapitata: model development and validation with surface waters, Sci. Total Environ., 407 (2009) 1901–1914.
  65. N.M. Franklin, N.J. Rogers, S.C. Apte, G.E. Batley, G.E. Gadd, P.S. Casey, Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility, Environ. Sci. Technol., 41 (2007) 8484–8490.
  66. L. Graff, P. Isnard, P. Cellier, J. Bastide, J.P. Cambon, J.F. Narbonne, H. Budzinski, P. Vasseur, Toxicity of chemicals to microalgae in river and in standard waters, Environ. Toxicol. Chem., 22 (2003) 1368–1379.
  67. P. Melnikov, T.C.M. De Freitas, Evaluation of acute chromium (III) toxicity in relation to Daphnia similis, J. Water Resour. Prot., 3 (2011) 127–130.
  68. B.F. Dowden, H.J Bennett, Toxicity of selected chemicals to certain animals, J. Water Pollut. Control Fed., 37 (1965) 1308–1316.
  69. D.J. Call, L.T. Brooke, N. Ahmad, J.E. Richter, Toxicity and Metabolism Studies with EPA Priority Pollutants and Related Chemicals in Freshwater Organisms, EPA 600/3-83-095, United States Environmental Protection Agency, Duluth, PA, 1983.
  70. J. Keithly, J.A. Brooker, D.K. DeForest, B.K. Wu, K.V. Brix, Acute and chronic toxicity of nickel to a cladoceran (Ceriodaphnia dubia) and an amphipod (Hyalella azteca), Environ. Toxicol. Chem., 23 (2004) 691–696.
  71. S. Oda, N. Tatarazako, H. Watanabe, M. Morit, T. Iguchi, Genetic differences in the production of male neonates in Daphnia magna exposed to juvenile hormone analogs, Chemosphere, 63 (2006) 1477–1484.
  72. S.I. Lee, E.J. Na, Y.O. Cho, B. Koopman, G. Bitton, Short-term toxicity test based on the algal uptake by Ceriodaphnia dubia, Water Environ. Res., 69 (1997) 1207–1210.