1. B. Geng, Z. Jin, T. Li, X. Qi, Preparation of chitosan-stabilized Fe0 nanoparticles for removal of hexavalent chromium in water, Sci. Total Environ., 407 (2009) 4994–5000.
  2. R.M. Nthumbi, J.C. Ngila, B. Moodley, A. Kindness, L. Petrik, Application of chitosan/polyacrylamide nanofibres for removal of chromate and phosphate in water, Phys. Chem. Earth, 50–52 (2012) 243–251.
  3. S.P. Dubey, K. Gopal, Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: a comparative study, J. Hazard. Mater., 145 (2007) 465–470.
  4. M.M. Areco, S. Hanela, J. Duran, M.S. Afonso, Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation, J. Hazard. Mater., 213–214 (2012) 123–132.
  5. N. Caliskan, A.R. Kul, S. Alkan, E.G. Sogut, I. Alacabey, Adsorption of zinc(II) on diatomite and manganese-oxide-modified diatomite: a kinetic and equilibrium study, J. Hazard. Mater., 193 (2011) 27–36.
  6. A.B. Pérez-Marín, A. Ballester, F. González, M.L. Blázquez, J.A. Muñoz, J. Sáez, V.M. Zapata, Study of cadmium, zinc and lead biosorption by orange wastes using the subsequent addition method, Bioresour. Technol., 99 (2008) 8101–8106.
  7. M. Visa, A. Duta, Methyl-orange and cadmium simultaneous removal using fly ash and photo-Fenton systems, J. Hazard. Mater., 244 (2013) 773–779.
  8. M. Visa, A.-M. Chelaru, Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment, Appl. Surf. Sci., 303 (2014) 14–22.
  9. A. Adamczuk, D. Kołodynska, Equilibrium, thermodynamic and kinetic studies on removal of chromium, copper, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan, Chem. Eng. J., 274 (2015) 200–212.
  10. T.C. Hsu, C.C. Yu, C.M. Yeh, Adsorption of Cu2+ from water using raw and modified coal fly ashes, Fuel, 87 (2008) 1355–1359.
  11. A.D. Papandreou, C.J. Stournaras, D. Panias, I. Paspaliaris, Adsorption of Pb(II), Zn(II) and Cr(III) on coal fly ash porous pellets, Miner. Eng., 24 (2011) 1495–1501.
  12. M. Visa, L. Isac, A. Duta, New fly ash TiO2 composite for the sustainable treatment of wastewater with complex pollutants load, Appl. Surf. Sci., 339 (2015) 62–68.
  13. T. Bakharev, Geopolymeric materials prepared using Class F fly ash and elevated temperature curing, Cem. Concr. Res., 35 (2005) 1224–1232.
  14. S. Meenakshi, K. Pandian, Simultaneous voltammetry detection of dopamine and uric acid in pharmaceutical products and urine samples using ferrocene carboxylic acid primed nanoclay modified glassy carbon electrode, J. Electrochem. Soc., 163 (2016) B543–B555.
  15. Z. Liu, Z. Jian, J. Fang, X. Xu, X. Zhu, S. Wu, Low-temperature reverse microemulsion synthesis, characterization, and photocatalytic performance of nanocrystalline titanium dioxide, Int. J. Photoenergy, 2012 (2012) 1–8.
  16. F. Hirose, K. Kuribayashi, T. Suzuki, Y. Narita, Y. Kimura, M. Niwano, UV treatment effect on TiO2 electrodes in dye-sensitized solar cells with N719 sensitizer investigated by infrared absorption spectroscopy, Electrochem. Solid-State Lett., 11 (2008) A109–A111.
  17. T.K. Naiya, P. Chowdhury, A.K. Bhattacharya, S. Kumar Das, Saw dust and neem bark as low-cost natural biosorbent for adsorptive removal of Zn(II) and Cd(II) ions from aqueous solutions, Chem. Eng. J., 148 (2009) 68–79.
  18. Z. Khademi, B. Ramavandi, M. Taghi Ghaneian, The behaviors and characteristics of a mesoporous activated carbon prepared from Tamarix hispida for Zn(II) adsorption from wastewater, J. Environ. Chem. Eng., 3 (2015) 2057–2067.
  19. R.J.E. Martins, R. Pardo, R.A.R. Boaventura, Cadmium(II) and zinc(II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness, Water Res., 38 (2004) 693–699.
  20. K.Chithra, S. Lakshmi and A. Jain, Carica papaya seed as a biosorbent for removal of Cr (VI) and Ni (II) ions from aqueous solution, Int. J. Chem. React. Eng., 12 (2014) 1–12.
  21. Y. Liu, Y.-J. Liu, Biosorption isotherms, kinetics and thermodynamics, Sep. Purif. Technol., 61 (2008) 229–242.
  22. M. Danish, M. Rokiah Hashim, N.M. Ibrahim, M. Rafatullah, O. Sulaiman, T. Ahmad, M. Shamsuzzoha, A. Ahmad, Sorption of copper(II) and nickel(II) ions from aqueous solutions using calcium oxide activated carbon: equilibrium, kinetic, and thermodynamic studies, J. Chem. Eng., 56 (2011) 3607–3619.
  23. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  24. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–471.
  25. M.J. Temkin and V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta. Physiochim., 12 (1940) 217–222.
  26. M.M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface, Chem. Rev., 60 (1960) 235–241.
  27. K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith, Sep. Purif. Technol., 24 (2001) 497–505.
  28. E. Demirbas, M. Kobya, S. Oncel, S. Sencan, Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies, Bioresour. Technol., 84 (2002) 291–293.
  29. K. Periasamy, C. Namasivayam, Removal of nickel(II) from aqueous solution wastewater using an agricultural waste: peanut hulls, Waste Manage., 15 (1995) 63–68.
  30. R.S. Singh, V.K. Singh, P.N. Tiwari, U.N. Singh, Y.C. Sharma, An economic removal of Ni(II) from aqueous solutions using an indigenous adsorbent, Open Environ. Eng. J., 2 (2009) 30–36.
  31. Y.B. Onundi, A.A. Mamun, M.F. Al Khatib, Y.M. Ahmed, Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon, Int. J. Environ. Sci. Technol., 7 (2010) 751–758.
  32. M. Sciban, M. Klasnja, B. Skrbic, Modified hardwood saw dust as adsorbent of heavy metal ions from water, Wood Sci. Technol., 40 (2006) 217–227
  33. E. Pehlivan, S. Cetin, B.H. Yanik, Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash, J. Hazard. Mater., 135 (2006) 193–199.
  34. C.H. Weng, C.P. Huang, Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash, Colloids Surf., A, 247 (2004) 137–143.
  35. G. Vázquez, M. Calvo, M. Sonia Freire, J. González-Alvarez, G. Antorrena, Chestnut shell as heavy metal adsorbent: optimization study of lead, copper and zinc cations removal, J. Hazard. Mater., 172 (2009) 1402–1414.
  36. M. Gorgievski, D. Bozic, V. Stankovic, N. Strbac, S. Serbula, Kinetics, equilibrium and mechanism of Cu2+, Ni2+ and Zn2+ ions biosorption using wheat straw, Ecol. Eng., 58 (2013) 113–122.
  37. S.R. Shukla, R.S. Pai, A.D. Shendarkar, Adsorption of Ni(II), Zn(II) and Fe(II) on modified coir fibre, Sep. Purif. Technol., 47 (2006) 141–147.
  38. M. Hadi, M.R. Samarghandi, G. McKay, Equilibrium two-parameter isotherms of acid dyes sorption by activated carbons: study of residual errors, Chem. Eng. J., 160 (2010) 408–416.
  39. L.S. Chan, W.H. Cheung, S.J. Allen, G. McKay, Error analysis of adsorption isotherm models for acid dyes onto bamboo derived activated carbon, Chin. J. Chem. Eng., 20 (2012) 535–542.