1. J. Nan, W.P. He, Characteristic analysis on morphological evolution of suspended particles in water during dynamic flocculation process, Desal. Wat. Treat., 41 (2012) 35–44.
  2. D. Thomas, S. Judd, N. Fawcett, Flocculation modelling: a review, Water Res., 33 (1999) 1579–1592.
  3. J.J. Zhang, X.Y. Li, Modeling particles size distribution dynamics in a flocculation system, AIChE J., 49 (2003) 1870–1882.
  4. C.A. Biggs, P. Lant, Modelling activated sludge flocculation using population balances, Powder Technol., 124 (2002) 201–211.
  5. J. Ducoster, A two-scale PBM for modeling turbulent foccuationin water treatment processes, Chem. Eng. Sci., 57 (2002) 2157–2168.
  6. C. Coufort, D. Bouyer, A. Liné, B. Haut, Modelling of flocculation using a population balance equation, Chem. Eng. Process., 46 (2007) 1264–1273.
  7. Y.L. Yeow, J.L. Liow, Y.K. Leong, A general procedure for obtaining the evolving particle-size distribution of flocculating suspensions, AIChE J., 58 (2012) 3043–3053.
  8. J.H. Zhao, W.P. Li, X.M. Jiao, Y.P. Lai, X.Y. Guo, Floc growth kinetics in magnesium hydroxide coagulation process, Desal. Wat. Treat., 52 (2014) 4334–4341.
  9. A. Ding, M. Hounslow, C.A. Biggs, Population balance modelling of activated sludge flocculation: investigating the size dependence of aggregation, breakage and collision efficiency, Chem. Eng. Sci., 61 (2006) 63–74.
  10. I. Nopens, E. Torfs, J. Ducoste, P.A. Vanrolleghem, K.V. Gernaey, Population balance model: a useful compementary modelling framework for future WWTP modelling, Water Sci. Technol., 71 (2015) 159–167.
  11. R.I. Jeldres, F. Concha, P.G. Toledo, Population balance modelling of particle flocculation with attention to aggregate restructuring and permeability, Adv. Colloid Interface Sci., 224 (2015) 62–71.
  12. B.M. Wilén, B. Jin, P. Lant, The influence of key chemical constituents in activated sludge on surface and flocculating properties, Water Res., 37 (2003) 2127–2139.
  13. G.P. Sheng, H.Q. Yu, X.Y. Li, Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review, Biotechnol. Adv., 28 (2010) 882–894.
  14. S. Saminathan, H. Liu, T.V. Nguyen, S. Vigneswarancd, Organic matter removal from biologically treated sewage effluent by flocculation and oxidation coupled with flocculation, Desal. Wat. Treat., 32 (2011) 133–137.
  15. X.D. Ruan, L. Li, J.X. Liu, Flocculating characteristic of activated sludge flocs: Interaction between Al3+ and extracellular polymeric substances, J. Environ. Sci., 25 (2013) 916–924.
  16. I. Nopens, N. Nere, P.A. Vanrolleghem, D. Ramkrishna, Solving the inverse problem for aggregation in activated sludge flocculation using a population balance framework, Water Sci. Technol., 56 (2007) 95–103.
  17. E. Torfs, G. Bellandi, I. Nopens, Towards mechanistic models for activated sludge flocculation under different conditions based on inverse problems, Water Sci. Technol., 65 (2012) 1946–1953.
  18. E. Torfs, A. Dutta, I. Nopens, Investigating kernel structures for Ca-induced activated sludge aggregation using an inverse problem methodology, Chem. Eng. Sci., 70 (2012) 176–187.
  19. F. Mietta, C. Chassagne, R. Verney, J.C. Winterwerp, On the behavior of mud floc size distribution: model calibration and model behavior, Ocean Dyn., 61 (2011) 257–271.
  20. J. Bridgeman, B. Jefferson, S. Parsons, Computational fluid dynamics modelling of flocculation in water treatment: a review, Eng. Appl. Comp. Fluid Mech., 3 (2009) 220–241.
  21. A.M. Karpinska, J. Bridgeman, CFD-aided modelling of activated sludge systems – a critical review, Water Res., 88 (2015) 861–879.
  22. D.H. Li, J. Ganczarczyk, Fractal geometry of particle aggregates generated in water and waste-water treatment processes, Environ. Sci. Technol., 23 (1989) 1385–1389.
  23. Z.L. Li, D.J. Zhang, P.L. Lu, S.W. Zeng, Y.H. Yang, Factors of effecting on floc size distribution and fractal dimension of activated sludge, Environ. Sci., 34 (2013) 1975–3980.
  24. D. Ramkrishna, Population Balances: Theory and Applications to Particulate Systems in Engineering, Academic Press, London, UK, 2000.
  25. I. Nopens, P.A. Vanrolleghem, D. Beheydt, Comparison and pitfalls of different discretised solution methods for population balance models: a simulation study, Comput. Chem. Eng., 29 (2005) 367–377.
  26. S. Kumar, D. Ramkrishna, On the solution of population balance equations by discretization—I. A fixed pivot technique, Chem. Eng. Sci., 51 (1996) 1311–1332.
  27. P. Spicer, S. Pratsinis, Coagulation and fragmentation: universal steady-state particle-size distribution, AIChE J., 42 (1996) 1612–1620.
  28. T. Serra, X. Casamitjana, Modelling the aggregation and break-up of fractal aggregates in a shear flow, Appl. Sci. Res., 59 (1998) 255–268.
  29. J. Flesch, P. Spicer, S. Pratsinis, Laminar and turbulent shear-induced flocculation of fractal aggregates, AIChE J., 45 (1999) 1114–1124.
  30. F. Maggi, F. Mietta, J.C. Winterwerp, Effect of variable fractal dimension on the floc size distribution of suspended cohesive sediment, J. Hydrol., 343 (2007) 43–55.
  31. Z.L. Li, P.L. Lu, D.J. Zhang, G.C. Chen, S.W. Zeng, Q. He, Population balance modeling of activated sludge flocculation: investigating the influence of extracellular polymeric substances (EPS) content and zeta potential on flocculation dynamics, Sep. Purif. Technol., 16 (2016) 91–100.
  32. I. Nopens, T. Koegst, K. Mahieu, P.A. Vanrolleghem, PBM and activated sludge flocculation: from experimental data to calibrated model, AIChE J., 51 (2005) 1548–1557.
  33. F. Maggi, Flocculation Dynamics of Cohesive Sediment, PhD Thesis, Delft University of Technology, Delft, 2005.
  34. K. Kusters, J. Wijers, D. Thoenes, Aggregation kinetics of small particles in agitated vessels, Chem. Eng. Sci., 52 (1997) 107–121.
  35. Y. Sang, P. Englezos, Flocculation of precipitated calcium carbonate (PCC) by cationic tapioca starch with different charge densities. II: Population balance modeling, Colloids Surf., A, 414 (2012) 520–526.