1. F. Konstantopoulou, S. Liu, L.G. Papageorgiou, P. Gikas, The Utilization of Non Conventional Water Resources to Subsidize Insufficient Water Balances: Case Study for Santorini Island, Greece, Proc. 5th Engineering Conference (ENCON 2012), Kuching, Sarawak, Malaysia, 2012.
  2. C. Guler, M. Kurt, M. Alpaslan, C. Akbulut, Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques, J. Hydrol., 414–415 (2012) 435–451.
  3. G. Bartzas, F. Tinivella, L. Medini, D. Zaharaki, K. Komnitsas, Assessment of groundwater contamination risk in an agricultural area in north Italy, Inform. Process. Agric., 2 (2015) 109–129.
  4. G. Bartzas, D. Zaharaki, M.T. Hernández-Fernández, J.L. Moreno, K. Komnitsas, Assessment of aquifer vulnerability in an agricultural area in Spain using the DRASTIC model, Environ. Forensics, 16 (2015) 356–373.
  5. S. Javadi, N. Kavehkar, M.H. Mousavizadeh, K. Mohammadi, Modification of DRASTIC model to map groundwater vulnerability to pollution using nitrate measurements in agricultural areas, J. Agric. Sci. Technol., 13 (2011) 239–249.
  6. K. Brindha, L. Elango, Cross comparison of five popular groundwater pollution vulnerability index approaches, J. Hydrol., 524 (2015) 597–613.
  7. L. Aller, T. Bennet, J.H. Lehr, R.J. Petty, DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings, Environmental Protection Agency Report, NWWA/EPA Series EPA-600/2-87-035, 1987.
  8. L. Bai, Y. Wang, F. Meng, Application of DRASTIC and extension theory in the groundwater vulnerability evaluation, Water Environ. J., 26 (2012) 381–391.
  9. J. Teixeira, H.I. Chaminé, J. Espinha Marques, J.M. Carvalho, A.J.S.C. Pereira, M.R. Carvalho, A comprehensive analysis of groundwater resources using GIS and multicriteria tools (Caldas da Cavaca, Central Portugal): environmental issues, Environ. Earth Sci., 73 (2014) 2699–2715.
  10. L. Ribeiro, Um Novo Índice de Vulnerabilidade Específico de Aquíferos – Formulação e Aplicações [SI: A New Index of Aquifer Susceptibility to Agricultural Pollution], Internal Report, ERSHA/CVRM, Instituto Superior Tecnico, Lisbon, Portugal, 2000, pp. 1–12.
  11. M. Anane, B. Abidi, F. Lachaal, A. Limam, S. Jellali, GIS-based DRASTIC, Pesticide DRASTIC and the Susceptibility Index (SI): comparative study for evaluation of pollution potential in the Nabeul–Hammamet shallow aquifer, Tunisia, Hydrogeol. J., 21 (2013) 715–731.
  12. Hellenic Statistical Authority (HAS), Demographic Features, 2011. Available from: publication/SAM03/ (accessed December 8, 2015).
  13. National Observatory of Athens network (NOA), Database for Monitoring and Analysis of the Meteorological Stations Network, 2015. Available from: (accessed November 28, 2015).
  14. D.J.J. Van Hinsbergen, E. Snel, S.A. Garstman, M. Marunteanu, C.G. Langereis, M.J.R. Wortel, J.E. Meulenkamp, Vertical motions in the Aegean volcanic arc: evidence for rapid subsidence preceding volcanic activity on Milos and Aegina, Mar. Geol., 209 (2004) 329–345.
  15. G.G. Pe, Petrology and geochemistry of volcanic rocks of Aegina, Greece, Bull. Volcanol., 37 (1973) 491–514.
  16. G. Pe-Piper, D.J.W. Piper, P.H. Reynolds, Paleomagnetic stratigraphy and radiometric dating of the pliocene volcanic rocks of Aegina, Greece, Bull. Volcanol., 46 (1983) 1–7.
  17. A. Vasiliakioti, Th. Moisiadi, Operational Master Plan of the Aigina-Agkistri Islands, Organization for the Athens Regulatory Plan (ORSA), 2006 (in Greek). Available from: (accessed November 14, 2015).
  18. Corine Land Cover (CLC), Copernicus Land Monitoring Services, 2012. Available from: (accessed November 20, 2015).
  19. LIFE-AgroStrat—Sustainable Strategies for the Improvement of Seriously Degraded Agricultural Areas: The Example of Pistachia vera L., Environmental Risk Assessment Regarding Water Bodies in the Pilot Area, Deliverable of Action A2 (Soil and Water Monitoring - Development of Soil Indicators), 2014. Available from: (accessed November 24, 2015).
  20. IUSS Working Group WRB, World Reference Base for Soil Resources, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Update), FAO, Rome, 2015. Available from: (accessed February 10, 2016).
  21. E. Tsantili, C. Takidelli, M.V. Christopoulos, E. Lambrinea, D. Rouskas, P.A. Roussos, Physical, compositional and sensory differences in nuts among pistachio (Pistachia vera L.) varieties, Sci. Hortic., 125 (2010) 562–568.
  22. E. Tsantili, K. Konstantinidis, M.V. Christopoulos, P.A. Roussos, Total phenolics and flavonoids and total antioxidant capacity in pistachio (Pistachia vera L.) nuts in relation to cultivars and storage conditions, Sci. Hortic., 129 (2011) 694–701.
  23. A. Neshat, B. Pradhan, M. Dadras, Groundwater vulnerability assessment using an improved DRASTIC method in GIS, Resour. Conserv. Recycl., 86 (2014) 74–86.
  24. T.Y. Stigter, L. Riberio, A.M.M.C. Dill, Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal, Hydrogeol. J., 14 (2006) 79–99.
  25. LIFE-AgroStrat—Sustainable Strategies for the Improvement of Seriously Degraded Agricultural Areas: The Example of Pistachia vera L., Soil Degradation and Desertification in Aegina Island Greece, Deliverable of the Action A2 (Soil Monitoring System), 2014. Available from: default/ files/files/Soil%20Monitoring_Executive.pdf (accessed November, 24 2015).
  26. R.C. Gogu, A. Dassargues, Sensitivity analysis for the EPIK method of vulnerability assessment in a small karstic aquifer, southern Belgium, Hydrogeol. J., 8 (2000) 337–345.
  27. I.S. Babiker, M.A. Mohamed, T. Hiyama, K. Kato, A GISbased DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan, Sci. Total Environ., 345 (2005) 127–140.
  28. P. Napolitano, A.G. Fabbri, Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS, K. Kovar, H.P. Nachtnebel, Eds., Proc. HydroGIS: Application of Geographical Information Systems in Hydrology and Water Resources Management, IAHS, Wallingford, UK, Vol. 235, 1996, pp. 559–566.
  29. M.L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, Springer, Berlin, 1999.
  30. Institute of Geology and Mineral Exploration (IGME), Evaluation of Water Resources Attica and Saronic Islands, Strategic Water Resources, 2009 (in Greek). Available from: Erga/GKPS/11/ (accessed February 2, 2016).
  31. N. Diodato, M. Ceccarelli, Computational uncertainty analysis of groundwater recharge in catchment, Ecol. Inf., 1 (2006) 377–389.
  32. L. Dassi, Use of chloride mass balance and tritium data for estimation of groundwater recharge and renewal rata in an unconfined aquifer from North Africa: case study from Tunisia, Environ. Earth, 60 (2010) 861–871.
  33. B. Hagedorn, A.I. El-Kadi, A. Mair, R.B. Whittier, K. Ha, Estimating recharge in fractured aquifers of a temperate humid to semiarid volcanic island (Jeju, Korea) from water table fluctuations, and Cl, CFC-12 and 3H chemistry, J. Hydrol., 409 (2011) 650–662.
  34. LIFE-AgroStrat—Sustainable Strategies for the Improvement of Seriously Degraded Agricultural Areas: The Example of Pistachia vera L., Meteorological Data, 2016. Available from: (accessed February 8, 2016).
  35. E. Dotsika, S. Lykoudis, D. Poutoukis, Spatial distribution of the isotopic composition of precipitation and spring water in Greece, Glob. Planet. Change, 71 (2010) 141–149.
  36. V. Dietrich, P. Gaitanakis, I. Mercolli, R. Oberhansli, Geological Map of Greece, Aegina Island, 1:25,000, IGME – Foundation Vulkaninstitut Immanuel Friedlander, 1991.
  37. Institute of Geology and Mineral Exploration (IGME), Geological Map of Greece, Aegina Island, Scale 1:25.000, 1995.
  38. National Cadastre and Mapping Agency S.A., Database of Colour Orthophotos, 2012. Available from: http://gis.ktimanet. gr/wms/ktbasemap/ default.aspx (accessed December 12, 2015).
  39. E.T. Taxidis, G.C. Menexes, A.P. Mamolos, C.A. Tsatsarelis, C.D. Anagnostopoulos, K.L. Kalburtji, Comparing organic and conventional olive groves relative to energy use and greenhouse gas emissions associated with the cultivation of two varieties, Appl. Energy, 149 (2015) 117–124.
  40. P.A. Roussos, Phytochemicals and antioxidant capacity of orange (Citrus sinensis (L.) Osbeck cv. Salustiana) juice produced under organic and integrated farming system in Greece, Sci. Hortic., 129 (2011) 253–258.
  41. European Union (EU), Council Directive of 12 December 1991 Concerning the Protection of Waters Against Pollution Caused by Nitrates from Agricultural Sources (91/676/EEC), 1991. Available from: legalcontent /EN/ TXT/PDF/?uri=CELEX:31991L0676&from= EN; 1991 (accessed October 9, 2015).
  42. European Commission (EC), Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption, Official Journal of the European Communities L330, 1998, pp. 32–54.
  43. M. Sadat-Noori, K. Ebrahimi, Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model, Environ. Monit. Assess., 188 (2016) 19.
  44. N. Kazakis, K. Voudouris, Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: modifying the DRASTIC method using quantitative parameters, J. Hydrol., 525 (2015) 13–25.
  45. A. Pisciotta, G. Cusimano, R. Favara, Groundwater nitrate risk assessment using intrinsic vulnerability methods: a comparative study of environmental impact by intensive farming in the Mediterranean region of Sicily, Italy, J. Geochem. Explor., 156 (2015) 89–100.