References

  1. J. Matos, J. Laine, J.M. Herrman, Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon, Appl. Catal., B, 18 (1998) 281–291.
  2. S.X. Liu, Z.P. Qu, X.W. Han, C.L. Sun, A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide, Catal. Today, 93 (2004) 877–884.
  3. L.H. Keith, W.A. Telliand, ES&T special report: priority pollutants. I. A perspective view, Environ. Sci. Technol., 13 (1979) 416–423.
  4. M. Machida, B. Fotoohi, Y. Amamo, H. Kanoh, L. Mercier, Cadmium(II) and lead(II) adsorption onto hetero-atom functional mesoporous silica and activated carbon, Appl. Surf. Sci., 258 (2012) 7389–7395.
  5. Z. Wu, Z. Cheng, W. Ma, Adsorption of Pb(II) from glucose solution on thiol-functionalized cellulosic biomass, Bioresour. Technol., 104 (2012) 807–809.
  6. H.J. Zhang, G.H. Chen, D.W. Bahnemann, Photoelectrocatalytic materials for environmental applications, J. Mater. Chem., 19 (2009) 5089–5121.
  7. M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental application of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
  8. X. Wang, X.J. Wang, J.F. Zhao, Bioframe synthesis of NF-TiO2/straw charcoal composites for enhanced adsorption-visible light photocatalytic degrade RhB, RSC Adv., 21 (2015) 12233–12240.
  9. I.M. Arabatzis, T. Stergiopoulos, M.C. Bernard, Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange, Appl. Catal., B, 42 (2003) 187–201.
  10. I.H. Tseng, J.C.S. Wu, H.Y. Chou, Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction, J. Catal., 221 (2004) 432–440.
  11. C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G.S. Guo, Photocatalytic organic pollutants degradation in metal-organic frameworks, Energy Environ. Sci., 7 (2014) 2831–2867.
  12. J.F. Tang, S. Chen, Y.P. Xu, W.J. Zhong, M. Ma, Z.J. Wang, Calibration and field performance of triolein embedded acetate membranes for passive sampling persistent organic pollutants in water, Environ. Pollut., 164 (2012) 158–163.
  13. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001) 269–271.
  14. T. Tong, J. Zhang, B. Tian, F. Chen, D. He, Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation, J. Hazard. Mater., 155 (2008) 572–579.
  15. R. Buchel, S.E. Pratsinis, A. Baiker, Mono- and bimetallic Rh and Pt NSR-catalysts prepared by controlled deposition of noble metals on support or storage component, Appl. Catal., B, 113–114 (2012) 160–171.
  16. V. Celorrio, M.G. Montes de Oca, D. Plana, R. Moliner, D.J. Fermín, M.J. Lázaro, Electrochemical performance of Pd and Au-Pd core-shell nanoparticles on surface tailored carbon black as catalyst support, Int. J. Hydrogen Energy, 37 (2012) 7152–7160.
  17. Y. Wang, G.H. Chen, Q.H. Shen, F.M. Zhang, G.L. Chen, Hydrothermal synthesis and photocatalytic activity of combination of flowerlike TiO2 and activated carbon fibers, Mater. Lett., 116 (2014) 27–30.
  18. X.W. Zhang, L.C. Lei, Preparation of photocatalytic Fe2O3–TiO2 coatings in one step by metal organic chemical vapor deposition, Appl. Surf. Sci., 254 (2008) 2406–2412.
  19. H. Meng, W. Hou, X.X. Xu, J.L. Xu, X. Zhang, TiO2-loaded activated carbon fiber: hydrothermal synthesis, adsorption properties and photocatalytic activity under visible light irradiation, Particuology, 14 (2014) 38–43.
  20. H.X. Huang, S.X. Chen, C. Yuan, Platinum nanoparticles supported on activated carbon fiber as catalyst for methanol oxidation, J. Power Sources, 175 (2008) 166–174.
  21. M.C. Macías-Pérez, M.A. Lillo-Ródenas, A. Bueno-López, SO2 retention on CaO/activated carbon sorbents. Part II. Effect of the activated carbon support, Fuel, 87 (2008) 2544–2550.
  22. L. Zhang, Q. Zhou, J.Y. Liu, N. Chang, Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber, Chem. Eng. J., 6 (2012) 160–167.
  23. J.W. Shi, J.T. Zheng, P. Wu, Immobilization of TiO2 films on activated carbon fiber and their photocatalytic degradation properties for dye compounds with different molecular size, Catal. Commun., 9 (2008) 1846–1850.
  24. S.H. Yao, J.Y. Li, Z.L. Shi, Immobilization of TiO2 nanoparticles on activated carbon fiber and its photodegradation performance for organic pollutants, Particuology, 8 (2010) 272–278.
  25. W.X. Liu, J. Ma, X.G. Qu, Hydrothermal synthesis of (Fe, N) co-doped TiO2 powders and their photocatalytic properties under visible light irradiation, Res. Chem. Intermed., 35 (2009) 321–328.
  26. L. Gomathi Devi, R. Kavitha, A review on plasmonic metal- TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system, Appl. Surf. Sci., 360 (2016) 601–622.
  27. S. Larumbe, M. Monge, C. Gómez-Polo. Comparative study of (N, Fe) doped TiO2 photocatalysts, Appl. Surf. Sci., 327 (2015) 490–497.
  28. Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He, Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III), J. Phys. Chem. C, 111 (2007) 10618–10623.
  29. L.Q. Jing, H.G. Fu, B.Q. Wang, D.J. Wang, B.F. Xin, S.D. Li, J.Z. Sun, Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles, Appl. Catal., B, 62 (2006) 282–291.
  30. Y.J. Liu, A.B. Wang, R. Claus, Molecular self-assembly of TiO2/polymer nanocomposite films, J. Phys. Chem. B, 101 (1997) 1385–1388.
  31. Y. Zhang, W. Zhu, X. Cui, W. Yao, T. Duan, One-step hydrothermal synthesis of iron and nitrogen co-doped TiO2 nanotubes with enhanced visible-light photocatalytic activity, CrystEngComm, 17 (2015) 8368–8376.
  32. H.H.H. Lin, A.Y.C. Lin, C.L. Hung, Photocatalytic oxidation of cytostatic drugs by microwave-treated N-doped TiO2 under visible light, J. Chem. Technol. Biotechnol., 90 (2015) 1345–1354.
  33. T. Hirakawa, P.V. Kamat, Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation, J. Am. Chem. Soc., 127 (2005) 3928–3934.
  34. B. Chi, L. Zhao, T. Jin, One-step template-free route for synthesis of mesoporous N-doped titania spheres, J. Phys. Chem. C, 111 (2007) 6189–6193.
  35. X.Y. Xu, X.S. Zhou, L.L. Zhang, L.M. Xu, L. Ma, J. Luo, M.J. Li, L.H. Zeng, Photoredox degradation of different water pollutants (MO, RhB, MB, and Cr(VI)) using Fe-N-S-tri-doped TiO2 nanophotocatalyst prepared by novel chemical method, Mater. Res. Bull., 70 (2015) 106–113.
  36. W.R. Zhao, Y.J. Li, M. Zhang, J.S. Chen, L.H. Xie, Q.M. Shi, X. Zhu, Direct microwave-hydrothermal synthesis of Fe-doped titania with extended visible-light response and enhanced H2-production performance, Chem. Eng. J., 283 (2016) 105–113.