1. M. Mehanna, T. Saito, J. Yan, M. Hickner, X. Cao, X. Huang, B.E. Logan, Using microbial desalination cells to reduce water salinity prior to reverse osmosis, Ener. Environ. Sci., 3 (2010) 1114.
  2. A. Carmalin Sophia, V.M. Bhalambaal, E.C. Lima, M. Thirunavoukkarasu, Microbial desalination cell technology: Contribution to sustainable waste water treatment process, current status and future applications, J. Environ. Chem. Eng., 4 (2016) 3468–3478.
  3. J. Anderson, S. Bassi, M. Fergusson, C. Laaser, B.O. Le Mat, V. Mattei, P. Strosser, Potential impacts of desalination development on energy consumption, 2008. ( accessed May 6, 2017.
  4. H. Wang, Z.J. Ren, A comprehensive review of microbial electrochemical systems as a platform technology, Biotech Adv., 31 (2013) 1796–1807.
  5. B. MacHarg, J. Seacord, T.F. Sessions, Affordable desalination collaboration (ADC) baseline tests reveal trends in membrane performance, Desal. Water Reuse., (2008) 30–39.
  6. Population Institute, Population and Water, 2010 (https://www.populat ioninst accessed May 6, 2017.
  7. L.Z.B. Hernández, Physiological and Operation Strategies for Optimizing Geobacter-based Electrochemical Systems, 2016.
  8. K.S. Jacobson, D.M. Drew, Z. He, Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode, Bioresour. Technol., 102 (2011) 376–380.
  9. U. Schröder, F. Harnisch, L.T. Angenent, Microbial electrochemistry and technology: terminology and classification, Energy Environ. Sci., 8 (2015) 513–519.
  10. T.A. Bower, A.D. Christy, O. Tuovinen, L. Zhao, Voltage Self-Amplification and Signal Conditioning for Enhanced Microbial Fuel Cell Performance, Ohio, 2013.
  11. X. Cao, X. Huang, P. Liang, K. Xiao, Y. Zhou, X. Zhang, B.E. Logan, A new method for water desalination using microbial desalination cells., Environ. Sci. Technol., 43 (2009) 7148–7152.
  12. B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells: Methodology and technology, Environ. Sci. Technol., 40 (2006) 5181–5192.
  13. K. Zuo, F. Liu, S. Ren, X. Zhang, P. Liang, X. Huang, A novel multi-stage microbial desalination cell for simultaneous desalination and enhanced organics and nitrogen removal from domestic wastewater, Environ. Sci. Water Res. Technol., 2 (2016) 832–837.
  14. M. Sindhuja, N.S. Kumar, V. Sudha, S. Harinipriya, Equivalent circuit modeling of microbial fuel cells using impedance spectroscopy, J. Ener. Storage, 7 (2016) 136–146.
  15. A.D. Khawaji, I.K. Kutubkhanah, J.M. Wie, Advances in seawater desalination technologies, Desalination, 221 (2008) 47–69.
  16. V.G. Gude, B. Kokabian, V. Gadhamshetty, Beneficial bioelectrochemical systems for energy, water, and biomass production, J. Microb. Biochem. Technol., S6 (2013) 1–14.
  17. S. Sevda, H. Yuan, Z. He, I.M. Abu-Reesh, Microbial desalination cells as a versatile technology: Functions, optimization and prospective, Desalination., 371 (2015) 9–17.
  18. Y. Kim, B.E. Logan, Microbial desalination cells for energy production and desalination, Desalination., 308 (2013) 122–130.
  19. H.M. Saeed, G.A. Husseini, S. Yousef, J. Saif, S. Al-Asheh, A. Abu Fara, S. Azzam, R. Khawaga, A. Aidan, Microbial desalination cell technology: A review and a case study, Desalination., 359 (2015) 1–13.
  20. X. Chen, X. Xia, P. Liang, X. Cao, H. Sun, X. Huang, Stacked microbial desalination cells to enhance water desalination efficiency, Environ. Sci. Technol., 45 (2011) 2465–2470.
  21. Y. Qu, Y. Feng, J. Liu, W. He, X. Shi, Q. Yang, J. Lv, B.E. Logan, Salt removal using multiple microbial desalination cells under continuous flow conditions, Desalination., 317 (2013) 17–22.
  22. Y. Zhang, I. Angelidaki, Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia, Bioresour. Technol., 177 (2015) 233–239.
  23. H. Luo, P. Xu, P.E. Jenkins, Z. Ren, Ionic composition and transport mechanisms in microbial desalination cells, J. Membr. Sci., 409–410 (2012) 16–23.
  24. C. Forrestal, P. Xu, P.E. Jenkins, Z. Ren, Microbial desalination cell with capacitive adsorption for ion migration control, Bioresour. Technol., 120 (2012) 332–336.
  25. B. Kokabian, V.G. Gude, Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production., Environ Sci. Processes Impacts., 15 (2013) 2178–85.
  26. Y. Qu, Y. Feng, X. Wang, J. Liu, J. Lv, W. He, B.E. Logan, Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control, Bioresour. Technol., 106 (2012) 89–94.
  27. A. Morel, K. Zuo, X. Xia, J. Wei, X. Luo, P. Liang, X. Huang, Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate, Bioresour. Technol., 118 (2012) 243–248.
  28. K. Zuo, L. Yuan, J. Wei, P. Liang, X. Huang, Competitive migration behaviors of multiple ions and their impacts on ion-exchange resin packed microbial desalination cell, Bioresour. Technol., 146 (2013) 637–642.
  29. Q. Ping, C. Zhang, X. Chen, B. Zhang, Z. Huang, Z. He, Mathematical model of dynamic behavior of microbial desalination cells for simultaneous wastewater treatment and water desalination, Environ. Sci. Technol., 48 (2014) 13010–9.
  30. P. Taylor, Q. Ping, Z. He, Effects of inter-membrane distance and hydraulic retention time on the desalination performance of microbial desalination cells, Desal. Water Treat., (2014) 37–41.
  31. Q. Ping, M.A. Edwards, L.E. Achenie, O.S. Keen, Advancing microbial desalination cell towards practical applications advancing microbial desalination cell towards practical applications, PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2016.
  32. X. Chen, P. Liang, X. Zhang, X. Huang, Bioelectrochemical systems-driven directional ion transport enables low-energy water desalination, pollutant removal, and resource recovery, Bioresour. Technol., 215 (2016) 274–284.
  33. Q. Wen, H. Zhang, Z. Chen, Y. Li, J. Nan, Y. Feng, Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination, Bioresour. Technol., 125 (2012) 108–113.
  34. Y. Kim, B.E. Logan, Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination, Environ. Sci. Technol., 45 (2011) 5840–5845.
  35. C. Santoro, M. Guilizzoni, J.P. Correa Baena, U. Pasaogullari, A. Casalegno, B. Li, S. Babanova, K. Artyushkova, P. Atanassov, The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells, Carbon, 67 (2014) 128–139.
  36. A. Aidan, G.A. Husseini, H. Yemendzhiev, V. Nenov, A. Rasheed, H. Chekkath, Y. Al-Assaf, Microbial desalination cell (MDC) in the presence of activated carbon, Adv. Sci, Eng. Medicine, 6 (2014) 1100–1104.
  37. X.A. Walter, J. Greenman, I.A. Ieropoulos, Oxygenic phototrophic biofilms for improved cathode performance in microbial fuel cells, Algal Res., 2 (2013) 183–187.
  38. B. Kokabian, V.G. Gude, Sustainable photosynthetic biocathode in microbial desalination cells, Chem. Eng. J., 262 (2015) 958–965.
  39. G.M. Girme, Algae powered microbial desalination cells, (2014) 58. MSc Thesis, Graduate School of the Ohio State University, Ohio.
  40. A. González Del Campo, P. Cañizares, M.A. Rodrigo, F.J. Fernández, J. Lobato, Microbial fuel cell with an algae-assisted cathode: A preliminary assessment, J. Power Sour., 242 (2013) 638–645.
  41. Z. He, L.T. Angenent, Application of bacterial biocathodes in microbial fuel cells, Electroanalysis, 18 (2006) 2009–2015.
  42. M.H. Kim, An analysis of anaerobic dual-anode chambered microbial fuel cell (MFC) performance, Fuel Cell, (2009), PhD thesis, University of Tennessee – Knoxville.
  43. Y. Ahn, B.E. Logan, A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design, Appl. Microbiol. Biotechnol., 93(5) (2012) 2241-2248.
  44. Z. Borjas, A. Esteve-Nú, J. Manuel Ortiz, Strategies for merging microbial fuel cell technologies in water desalination processes: Start-up protocol and desalination efficiency assessment, J. Power Sources, (2017). doi:10.1016/j.jpowsour. 2017.02.052.
  45. X. Chen, H. Sun, P. Liang, X. Zhang, X. Huang, Optimization of membrane stack configuration in enlarged microbial desalination cells for efficient water desalination, J. Power Sources, 324 (2016) 79–85.
  46. S. Chen, G. Liu, R. Zhang, B. Qin, Y. Luo, Y. Hou, Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure, Bioresour Technol., 116 (2012) 507–511.
  47. G.C. Gil, I.S. Chang, B.H. Kim, M. Kim, J.K. Jang, H.S. Park, H.J. Kim, Operational parameters affecting the performannce of a mediator-less microbial fuel cell., Biosens. Bioelectr., 18 (2003) 327–334.
  48. W. He, X. Zhang, J. Liu, X. Zhu, Y. Feng, B. Logan, Microbial fuel cells with an integrated spacer and separate anode and cathode modules, Environ. Sci. Water Res. Technol., 2 (2015) 186–195.
  49. M. Mehanna, P.D. Kiely, D.F. Call, B.E. Logan, Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production, Environ Sci. Technol., 44 (2010) 9578–9583.
  50. H. Rismani-Yazdi, A.D. Christy, B.A. Dehority, M. Morrison, Z. Yu, O.H. Tuovinen, Electricity generation from cellulose by rumen microorganisms in microbial fuel cells, Biotech. Bioeng., 97 (2007) 1398–1407.
  51. H. Luo, P. Xu, T.M. Roane, P.E. Jenkins, Z. Ren, Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination, Bioresour. Technol., 105 (2012) 60–66.
  52. H.S. Lee, C.I. Torres, B.E. Rittmann, Effects of substrate diffusion andanode potential on kinetic parameters for anode-respiring bacteria, Environ Sci Technol., 43 (2009) 7571–7577.
  53. E. Yang, M.J. Choi, K.Y. Kim, K.J. Chae, I.S. Kim, Effect of initial salt concentrations on cell performance and distribution of internal resistance in microbial desalination cells., Environ. Technol., 36 (2015) 852–860.
  54. X. Zhang, W. He, L. Ren, J. Stager, P.J. Evans, B.E. Logan, COD removal characteristics in air-cathode microbial fuel cells, Bioresour Technol., 176 (2015) 23–31.
  55. A.C. Sophia, V.M. Bhalambaal, Utilization of coconut shell carbon in the anode compartment of microbial desalination cell (MDC) for enhanced desalination and bio-electricity production, J. Environ. Chem. Eng., 3 (2015) 2768–2776.
  56. L. Yuan, X. Yang, P. Liang, L. Wang, Z.H. Huang, J. Wei, X. Huang, Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water, Bioresour. Technol., 110 (2012) 735–738.
  57. Z. Ge, C.G. Dosoretz, Z. He, Effects of number of cell pairs on the performance of microbial desalination cells, Desalination, 341 (2014) 101–106.
  58. H. Luo, P. Xu, Z. Ren, Long-term performance and characterization of microbial desalination cells in treating domestic wastewater, Bioresour. Technol., 120 (2012) 187–193.
  59. S. Roy, S. Marzorati, Microbial Fuel Cells, Elsevier Inc., 2016.
  60. Q. Ping, B. Cohen, C. Dosoretz, Z. He, Long-term investigation of fouling of cation and anion exchange membranes in microbial desalination cells, Desalination, 325 (2013) 48–55.
  61. L. Robuschi, J.P. Tomba, G.D. Schrott, P.S. Bonanni, P.M. Desimone, J.P. Busalmen, Spectroscopic slicing to reveal internal redox gradients in electricity-producing biofilms, Angewandte Chemie, 52 (2013) 925–928..
  62. B.E. Logan, Microbial Fuel Cell and Reverse Electrodialysis Technologies for Renewable Power Generation From Biomass and Salinity Gradients, ( accessed November 21, 2016.
  63. H. Luo, P.E. Jenkins, Z. Ren, Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells, Environ. Sci. Technol., 45 (2011) 340–344.
  64. T.H.J.A. Sleutels, T. Heijne, C.J.N. Buisman, An Outlook for Practical Applications, Bioelectrochemical Systems, Chem. Sus. Chem., 5 (2012) 1012–1019.
  65. F. Meng, J. Jiang, Q. Zhao, K. Wang, G. Zhang, Q. Fan, L. Wei, J. Ding, Z. Zheng, Bioelectrochemical desalination and electricity generation in microbial desalination cell with dewatered sludge as fuel, Bioresour. Technol., 157 (2014) 120–126.
  66. Y. Kim, B.E. Logan, Microbial reverse electrodialysis cells for synergistically enhanced power production, Environ. Sci. Technol., 45 (2011) 5834–5839.
  67. D.P.B.T.B. Strik, H. Terlouw, H.V.M. Hamelers, C.J.N. Buisman, Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC), App. Microbiol. Biotech., 81 (2008) 659–668.
  68. B. Kokabian, V. Gude, Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production, Environ. Sci.: Processes Impacts, 15 (2013) 2178.
  69. Y. Qu, Y. Feng, J. Liu, W. He, X. Shi, Q. Yang, J. Lv, B.E. Logan, Salt removal using multiple microbial desalination cells under continuous flow conditions, Desalination, 317 (2013) 17–22.
  70. F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, I. Herrmann, Challenges and constraints of using oxygen cathodes in microbial fuel cells, Environ. Sci. Technol., 40 (2006) 5193–5199.
  71. F. Zhang, Z. He, Scaling up microbial desalination cell system with a post-aerobic process for simultaneous wastewater treatment and seawater desalination, Desalination., 360 (2015) 28–34.
  72. X. Chen, P. Liang, Z. Wei, X. Zhang, X. Huang, Bioresource Technology Sustainable water desalination and electricity generation in a separator coupled stacked microbial desalination cell with buffer free electrolyte circulation, Bioresour. Technol., 119 (2012) 88–93.
  73. C. Forrestal, P. Xu, Z. Ren, Sustainable desalination using a microbial capacitive desalination cell, Ener. Environ. Sci., 5 (2012) 7161.
  74. M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it? Ener. Environ. Sci., 8 (2015) 2296–2319.
  75. L. Bazinet, M. Araya-Farias, Effect of calcium and carbonate concentrations on cationic membrane fouling during electrodialysis, J. Colloid Interface Sci., 281 (2005) 188–196.
  76. C. Casademont, G. Pourcelly, L. Bazinet, Effect of magnesium/ calcium ratio in solutions subjected to electrodialysis: Characterization of cation-exchange membrane fouling, J.Colloid Interface Sci., 315 (2007) 544–554.
  77. R Clayton, Desalination for Water Supply (2015) ( accessed November 30, 2016.
  78. W. Yang, V.J. Watson, B.E. Logan, Substantial humic acid adsorption to activated carbon air cathodes produces a small reduction in catalytic activity, Env. Sci Technol., 50 (2016) 8904– 8909.
  79. S. Mikhaylin, Impact des champs électriques pulsés à courte durée d’impulsion/Pause sur le colmatage des membranes en cours de procédés électromembranaires: mécanismes d’action et influence sur les performances des procédés, (2015) 203, doi:10.1017/CBO9781107415324.004.
  80. X. Zheng, Z. Zhang, D. Yu, X. Chen, R. Cheng, S. Min, J. Wang, Q. Xiao, J. Wang, Overview of membrane technology applications for industrial wastewater treatment in China to increase water supply, Resourc. Conserv. Recycling, 105 (2015) 1–10.
  81. Y. Dong, Y. Qu, W. He, Y. Du, J. Liu, X. Han, Y. Feng, A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode, Bioresour. Technol., 195 (2015) 66–72.
  82. C.M. Werner, B.E. Logan, P.E. Saikaly, G.L. Amy, Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell, J. Membr. Sci., 428 (2013) 116–122.
  83. B.E. Logan, M.J. Wallack, K.Y. Kim, W. He, Y. Feng, P.E. Saikaly, Assessment of microbial fuel cell configurations and power densities, Environ. Sci. Technol. Lett., 2 (2015) 206–214.
  84. Y. shu Yuan, X. Yuan, Progress and prospects of high salted wastewater, Adv. Sci. Eng., 6 (2014) 37–63.
  85. K. Zuo, J. Cai, S. Liang, S. Wu, C. Zhang, P. Liang, X. Huang, A ten liter stacked microbial desalination cell packed with mixed ion-exchange resins for secondary effluent desalination, Environ. Sci. Technol., 48 (2014) 9917–9924.
  86. C. Huang, T. Xu, Electrodialysis with bipolar membranes for sustainable development, Environ. Sci. Technol., 40 (2006) 5233–5243.
  87. B. Zhang, Z. He, Improving water desalination by hydraulically coupling an osmotic microbial fuel cell with a microbial desalination cell, J. Membr. Sci., 441 (2013) 18–24.
  88. A. Morel, K. Zuo, X. Xia, J. Wei, X. Luo, P. Liang, X. Huang, Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate, Bioresour. Technol., 118 (2012) 43–48.
  89. S. Chen, G. Liu, R. Zhang, B. Qin, Y. Luo, Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions, Environ. Sci. Technol., 46 (2012) 2467−2472.
  90. Y. Zhang, I. Angelidaki, A new method for in situ nitrate removal from groundwater using submerged microbial desalination e denitrification cell ( SMDDC ), Water Res., 47 (2013) 1827–1836.
  91. M.K. Zamanpour, H. Kariminia, M. Vosoughi, Electricity generation, desalination and microalgae cultivation in a biocathode-microbial desalination cell, Biochem. Pharmacol., 5 (2017) 843– 848.
  92. K.S. Jacobson, D.M. Drew, Z. He, Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater, Environ. Sci. Technol., 45 (2011) 4652–4657.
  93. M. Helder, W. Chen, E.J.M. Van Der Harst, D.P.B.T.B. Strik, Electricity production with living plants on a green roof: environmental performance of the plant-microbial fuel cell, Biofuels Bioprod. Bioref., (2013) 52–64. doi:10.1002/bbb.