1. G. Ziemacki, G. Viviano, F. Merli, Heavy metals: sources and environmental presence, Ann. Ist. Super. Sanità, 25 (1989) 531– 536.
  2. J.O. Duruibe, M.O.C. Ogwuegbu, J.N. Egwurugwu, Heavy metal pollution and human biotoxic effects, Int. J. Phys. Sci., 2 (2007) 112–118.
  3. M. Wana, C. Kan, B.D. Rogel, L.P. Dalida, Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand, Carbohyd. Polym., 80 (2010) 891–899.
  4. S. Malar, S. Vikram, P. Favas, V. Perumal, Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)], Botanical Studies, 54 (2014) 1–11.
  5. D. Tilaki, R. Ali, Study on removal of cadmium from water environment by adsorption on GAC, BAC and biofilter, Diffuse Pollution Conference, Dublin, 8B Ecology, (2003) 35–39.
  6. A.L. Mendoza, J.L. Reyes, E. Melendez, D. Martín, M.C. Namorado, E. Sanchez, L.M. Del, Alpha-tocopherol protects against the renal damage caused by potassium dichromate, Toxicology, 218 (2006) 237–246.
  7. K.A. Patlolla, C. Barnes, D. Hackett, P.B. Tchollnwou, Potassium dichromate induced cytotoxicity, genotoxicity and oxidative stress in human liver carcinoma (HepG2) cells, Int. J. Environ. Res., 6 (2009) 643–653.
  8. D.P. Vihol, J. Patel, R.D. Varia, J.M. Pater, D.G. Ghodasara, B.P. Joshi, K.S. Prajapati, Effect of sodium dichromate on haemato-biochemical parameters in wistar rats, J. Pharmacology, 7 (2012) 58–63.
  9. X. Zhang, R. Bai, Mechanisms and kinetics of humic acid adsorption onto chitosan-coated granules, J. Colloid Interf. Sci., 264 (2003) 30–38.
  10. S. Malkondu, A. Kocak M. Yilmaz, Immobilization of two azacrown ethers on chitosan: evaluation of selective extraction ability toward Cu(II) and Ni(II), J. Macromol. Sci.—Part A: Pure Appl. Chem., 46 (2009) 745–750.
  11. W.S Wan Ngah, A. Musa, Adsorption of humic acid onto chitin and chitosan, J. Appl. Polym. Sci, 69 (1998) 2305–2310.
  12. J. Kumirska, M. X. Weinhold, J. Thoming, P. Stepnowski, Biomedical activity of chitin/chitosan based materials—influence of physicochemical properties apart from molecular weight and degree of N-Acetylation, Polymers, 3 (2011) 1875–1901.
  13. Y. Lu, J. He, G. Luo, An improved synthesis of chitosan bead for Pb(II) adsorption, Chem. Eng. J., 226 (2013) 271–278.
  14. J.B. Dima, C. Sequeiros, N.E. Zaritzky, Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes, Chemosphere, 141 (2015) 100–111.
  15. E. Ghabbour, G. Davies, Humic substances (structures, models and function). Royal Society of Chemistry, UK, pp. 19–30.
  16. B. El-Eswed, F. Khalili, Adsorption of Cu(II) and Ni(II) on solid humic acid from the Azraq area, Jordan, J. Colloid Interf. Sci., 299 (2006) 497–503.
  17. H. Baker, F. Khalili, Analysis of the removal of lead(II) from aqueous solutions by adsorption onto insolubilized humic acid: temperature and pH dependence. Anal. Chim. Acta, 516 (2004) 179–186.
  18. J. Zhao, G. Binjiang, Coating Fe3O4 magnetic manoparticles with humic acid for high efficient removal of heavy metals in water, Environ. Sci. Technol., 42 (2008) 6949–6954.
  19. W.L. Yan, R. Bai. Adsorption of lead and humic acid on chitosan hydrogel beads, Water Res., 39 (2004) 688–698.
  20. W.S. Wan Ngah, M.A. Hanafiah, S.S. Yong, Adsorption of humic acid from aqueous solutions on crosslinked chitosan–epichlorohydrin beads: Kinetics and isotherm studies, Colloid Surface B: Biointerfaces, 65 (2008) 18–24.
  21. S.J. Santosa, D. Siswanta, A. Kumiawan, W.H. Rahmanto, Hybrid of chitin and humic acid as high performance sorbent for Ni(II), Surf. Sci., 601 (2007) 5155–5161.
  22. S.J. Santosa, D. Siswanta, S. Sudiono, M. Sehol, Synthesis and utilization of chitin–humic acid hybrid as sorbent for Cr(III), Surf. Sci., 601 (2007) 5148–5154.
  23. E. Repoa, J.K. Warchol, T.A. Kurniawan, M.E.T. Sillanpää, Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: kinetic and equilibrium modeling, Chem. Eng. J., 161 (2010) 73–82.
  24. F. Zhao, E. Repo, D. Yin, M.E.T. Sillanpää, Adsorption of Cd(II) and Pb(II) by a novel EGTA-modified chitosan material: Kinetics and isotherms, J. Colloid Interface Sci., 409 (2013) 174–182.
  25. F. Zhao, E. Repo, M. Sillanpää, Y. Meng, D. Yin, W.Z. Tang, Green synthesis of magnetic EDTA- and/or DTPA-crosslinked chitosan adsorbents for highly efficient removal of metals, Ind. Eng. Chem. Res., 54 (2015) 1271−1281.
  26. A. Rodrigues, A. Brito, P. Janknecht, M. F. Proenc, R. Nogueira,Quantification of humic acids in surface water: effects of divalent cations, pH, and filtration J. Environ. Monit., 11 (2009) 377–382.
  27. Y. Wu, M. Hussain, R. Fassihi, Development of a simple method for determination of glucosamine release from modified release matrix tablets, J. Pharmaceut. Biomed., 38 (2005) 263–269.
  28. M. Schnitzerin, M. Schnitzer, S. U. Khan, (eds.), Soil Organic Matter, Elsevier Scientific Publishing Company (1978) pp. 1–64.
  29. G. R. Choppin, L. Kullberg, Proton thermodynamics of humic acid. J. Inorg. Nucl. Chem., (40) (1978) 651–654.
  30. S. Samal, R.R. Das, S. Acharya, P. Mohapatra, R.K.A. Dey, Comparative study on metal ion uptake behavior of chelating resins derived from the formaldehyde–condensed phenolic Schiff bases of 4,4’-diaminodiphenylsulfone and hydroxybenzaldehydes. Polym. Plast. Technol. Eng., 41(2) (2002) 229–246.
  31. R. von Wandruszka, Humic acids: their detergent qualities and potential uses in pollution remediation, Geochem. Trans., 1 (2000) 10–15.
  32. A. Barth, Infrared spectroscopy of proteins, Biochim. Biophys. Acta, 1767 (2007) 1073–1101.
  33. J. Coates, Interpretation of Infrared Spectra, A Practical Approach, in R.A. Meyers (Ed.), Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd, (2000) pp. 10815–10837.
  34. M.A. Shaker, Thermodynamics and kinetics of bivalent cadmium biosorption onto nanoparticles of chitosan-based biopolymers, J. Taiwan Inst. Chem. Eng., 47 (2015) 79–90.
  35. M.T. Rosado, M. Leonor, T.S. Durat, R. Fausto, Vibrational spectra of acid and alkaline glycine salts, Vibr. Spectros., 16 (1998) 35–54.
  36. C. Milne, D. Kinniburgh, W. van Riemsdijk, E. Tipping, “Generic NICA-Donnan model parameters for metal-ion binding by humic Substances, Environ. Sci. Technol., 37 (2003) 958–971.
  37. Q.Z. Wang, X.G. Chen, N. Liu, S.X. Wang, C.S. Liu, X.H. Meng C.G. Liu, Protonation constants of chitosan with different molecular weight and degree of deacetylation, Carbohyd. Polym., 65 (2006) 194–201.
  38. M.A. Shaker, H.M. Albishri, Dynamics and thermodynamics of toxic metals adsorption onto soil-extracted humic acid, Chemosphere, 111 (2014) 587–595.
  39. D.G. Kinniburgh, W.H. Riemsdijk, L.K. Koopal, M. Borkovec, M.F. Benedetti, M.J. Avena, Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency, Colloids Surfaces A: Physicochem. Eng. Asp., 151 (1999) 147–166.
  40. M.E. Essington, Soil and water chemistry: An integrative approach. 2nd ed., CRC Press, Boca Raton, FL (2003) p. 179.
  41. I. Langmuir, the adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1362–1403.
  42. H.R. Tashauoei, H.M. Attar, M.M. Amin, M. Kamali, M. Nikaeen, V. Dastjerdi, Removal of cadmium and humic acid from aqueous solutions using surface modified nanozeolite A. Int. J. Environ. Sci. Tech., 7 (2010) 497–508.
  43. G. MaKay, J.F. Porter, Equilibrium parameters for the sorption of copper, cadmium and zinc ions onto peat. J. Chem. Tech. Biotechnol., 69 (1997) 309–320.
  44. J. Hizal, R. Apak, Modeling of copper(II) and lead(II) adsorption on kaolinite–based clay minerals individually and in the presence of humic acid. J. Colloid. Interface Sci., 295 (2006) 1–13.
  45. A.T. Paulino, M.R. Guilherme, A.V. Reis, E.B. Tambourgi, J. Nozaki, E.C. Muniz, Capacity of adsorption of Pb2+ and Ni2+ from aqueous solutions by chitosan produced from silkworm chrysalides in different degrees of deacetylation, J. Hazard. Mater., 147 (2007) 139–147.
  46. H.H. Tran, F.A. Roddick, J.A. O’donnel, Comparison of chromatography and desiccant silica gel for the adsorption of metal ions I. Adsorption and kinetics, Wat. Res., 33 (1999) 2992–3000.
  47. A.K. Kushwaha, N. Gupta, M.C. Chattopadhyaya, Adsorption behavior of lead onto a new class of functionalized silica gel, Arab. J. Chem., 10 (2017) S81–S89.
  48. Y.S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Wat. Res., 34 (2000) 735–742.
  49. Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by Peat, Chem. Eng. J., 70 (1998) 115–124.
  50. R. Donat, A. Akdogan, E. Erdem, H. Ceti, Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. J. Colloid Interf. Sci., 286 (2005) 43–52.
  51. M. Giovanela, E. Parlanti, E.J. Soriano-Sierra, M.S. Soldi, M. M. D. Sierra, Elemental compositions, FT-IR spectra and thermal behavior of sedimentary fulvic and humic acids from aquatic and terrestrial environments, Geochem. J., 38 (2004) 255–264.
  52. M. Tatzber, M. Stemmer, H. Spiegel, C. Katzlberger, G. Haberhauer, A. Mentler, H.M. Gerzabek, FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures, J. Plant Nutr. Soil Sci., 170 (2007) 522–529.