References

  1. F. Fu, Qi Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 92 (2011) 407–418.
  2. P. Patnaik, Handbook of inorganic chemicals, McGraw-Hill, New York, 2002.
  3. H. Xuwen, Y. Huimin, H. Yong, Treatment of mine water high in Fe and Mn by modified manganese sand, Min. Sci. Tech., 20 (2010) 0571–0575.
  4. C.L. Beh, T.G. Chuah, M.N. Nourouzi, T.S.Y. Choong, Removal of heavy metals from steel making wastewater by using electric arc furnace slag, E-J. Chem., 9(4) (2012) 2557–2564.
  5. World Health Organization (2011), Manganese in Drinking- water, Background Document for Development of WHO Guidelines for drinking water quality, WHO, Geneva, Switzerland.
  6. USEPA, “Drinking Water Health Advisory for Manganese”, U.S. Environmental Protection Agency, Office of Water, Washington, DC EPA-822-R-04-003, 2004.
  7. D. Allen, K. Pelude, Dissolved Manganese in Drinking Water on the Gulf Islands: Occurrence and Toxicity, Burnaby, Department of Earth Sciences, Simon Fraser University, B.C. V5A 1S6, 2001.
  8. P. Brandhuber, S. Craig, M. Friedman, A. Hill, S. Booth, A. Hanson, Legacy of Manganese Accumulation in Water Systems, Water Research Foundation, Report #4314, Denver, CO, 2015.
  9. D.S. Patil, S.M. Chavan, J.U. Kennedy, A review of technologies for manganese removal from wastewaters, J. Environ. Chem. Eng., 4 (2016) 468–487.
  10. R.A. Duarte, A.C. Ladeira,Study of manganese removal from mining effluent, mine water-managing the challenges (IMWA 2011, Aachen, Germany) (2011) 297–300.
  11. R.J. Lovett, Removal of manganese from acid mine drainage, J. Environ. Quality, 26(4) (1997) 1017–1024.
  12. A.O. Aguiar, R.A. Duarte, A.C.Q. Ladeira, The application of MnO2 in the removal of manganese from acid mine water, Water Air Soil Pollut., 224 (2013) 1690.
  13. A.M. Silva, F.L.S. Cruz, R.M.F. Lima, M.C. Teixeira, V.A. Leão, Manganese and limestone interactions during mine water treatment, J. Hazard. Mater., 181 (2010) 514–520.
  14. D. Ellis, C. Bouchard, G. Lantagne, Removal of iron and manganese from groundwater by oxidation and microfiltration, Desalination, 130 (2000) 255–264.
  15. Z. Teng, J.Y. Huang, K. Fujita, S. Takizawa, Manganese removal by hollow fiber micro-filter. Membrane separation for drinking water, Desalination, 139 (2001) 411–418.
  16. D. Mourato, C. Smith, Proc., 6th Workshop on Drinking Water, AQTE, Montreal, 1994, pp. 705–716.
  17. P. Côté, D. Mourato, C. Güngerich, J. Russell, E. Houghton, Immersed membrane filtration for the production of drinking water: case studies, ISWA Conference, Membranes in Drinking and Industrial Water Production, Amsterdam, 1998.
  18. I.A. Katsoyiannis, A.I. Zouboulis, Biological treatment of Mn(II) and Fe(II) containing groundwater: kinetic considerations and product characterization, Water Res., 38 (2004) 1922–1932.
  19. S.M. Bamforth, D.A.C. Manning, I. Singleton, P.L. Younger, K.L. Johnson, Manganese removal from mine waters—investigating the occurrence and importance of manganese carbonates, Appl. Geochem., 21(8) (2006) 1274–1287.
  20. M. Bodzek, K. Konieczny, A. Kwiecińska, Application of membrane processes in drinking water treatment–state of art, Desal. Water Treat., 35 (2011) 164–184.
  21. H.A. Qdaisa, H. Moussa, Removal of heavy metals from wastewater by membrane processes: a comparative study, Desalination, 164 (2004) 105–110.
  22. N. Hilal, H. A1-Zoubi, N.A. Darwish, A.W. Mohammad, M. Abu Arabi, A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modeling, and atomic force microscopy, Desalination, 170 (2004) 281–308.
  23. Ministry of Environment & Forests, Global good practices in industrial wastewater treatment and disposal/reuse, with special reference to common effluent treatment plants, Central Pollution Control Board, Govt. of India, 2015. www.cpcb.nic. in/Report_CETP_GGP.pdf.
  24. S. Chaturvedi, P.N. Dave, Removal of iron for safe drinking water, Desalination, 303 (2012) 1–11.
  25. R.S. Harisha, K.M. Hosamani, R.S. Keri, S.K. Nataraj, T.M. Aminabhavi, Arsenic removal from drinking water using thin film composite nanofiltration membrane, Desalination, 252 (2010) 75–80.
  26. Y. Ku, Shi-Wei Chen, Wen-Yu Wang, Effect of solution composition on the removal of copper ions by nanofiltration, Sep. Purif. Technol., 43 (2005) 135–142.
  27. G.T. Ballet, L. Gzara, A. Hafiane, M. Dhahbi, Transport coefficients and cadmium salt rejection in nanofiltration membrane, Desalination, 167 (2004) 369–376.
  28. M. Taleb-Ahmed, S. Taha, R. Maachi, G. Dorange, The influence of physico-chemistry on the retention of chromium ions during nanofiltration, Desalination, 145 (2002) 103–108.
  29. N.B. Frare`s, S. Taha, G. Dorange, Influence of the operating conditions on the elimination of zinc ions by nanofiltration, Desalination, 185 (2005) 245–253.
  30. C.V. Gherasim, P. Mikulášek, Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration, Desalination, 343 (2014) 67–74.
  31. Z.V.P. Murthy, S.K. Gupta, Estimation of mass transfer coefficient using a combined nonlinear membrane transport and film theory model, Desalination, 109 (1997) 39–49.
  32. U. Merten, Transport properties of osmotic membranes, in: U. Merten (Ed.), Desalination by Reverse Osmosis, MIT Press, Cambridge, MA, 1966, pp. 15–24.
  33. W. Pusch, Determination of transport parameters of synthetic membranes by hyperfiltration experiments. Part I. Derivation of transport relationship from linear relations of thermodynamics of irreversible processes, Ber. Bunsen. Phys. Chem., 81 (1977) 269–276.
  34. O. Kedem, K. Spiegler, Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, Desalination, 1 (1966) 311–326.
  35. R.W. Baker, Membrane Technology, and Applications, 2nd ed., John Wiley & Sons Inc., NJ, USA, 2004.
  36. M. Mulder, Basic Principles of Membrane Technology, 2nd ed., Kluwer Academic Publishers, Dordrecht, 1996.
  37. S.S. Madaeni, S. Koocheki, Application of Taguchi method in the optimization of wastewater treatment using spiral-wound reverse osmosis element, Chem. Eng. J., 119 (2006) 37–44.
  38. D. Allende, D. Pando, M. Matos, C.E. Carleos, C. Pazos, J.M. Benito, Optimization of a membrane hybrid process for oilin- water emulsions treatment using Taguchi experimental design, Desal. Water Treat., 57(11) (2016) 4832–4841.
  39. G. Taguchi, in: Introduction to Quality Engineering, Asian Productivity Organization, Tokyo, 1990.
  40. P.G. Ross, in: Taguchi Techniques for Quality Engineering, 2nd ed., McGraw-Hill, New York, 1996.
  41. S.H. Park, Robust design and Analysis for Quality Engineering, Chapman & Hall, London, 1996.
  42. M.S. Phadke, Quality Engineering Using Robust Design, Prentice- Hall, USA, 1989.
  43. Z.V.P. Murthy, A. Choudhary, Separation of cerium from feed solution by nanofiltration, Desalination, 279 (2011) 428–432.
  44. J.M. Dickson, H. Mehdizadeh, Overview of reverse osmosis for chemical engineers part 1: Fundamentals of membrane mass transfer, J. Eng. Islam. Repub. Iran, 1 (1988) 163–179.
  45. V. Gekas, B. Hallström, Mass transfer in the membrane concentration polarization layer under turbulent crossflow: I. Critical literature review and adaptation of existing Sherwood correlations to membrane operations, J. Membr. Sci., 30(2) (1987) 153–170.
  46. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, first ed., John Wiley & Sons, Inc., New York, 1960.
  47. T.Y. Qiu, P.A. Davies, Concentration polarization model of spiral- wound membrane modules with application to batch mode RO desalination of brackish water, Desalination, 368 (2015) 36–47.
  48. B. Shi, P. Marchetti, D. Peshev, S. Zhang, A.G. Livingston, Performance of spiral-wound membrane modules in organic solvent nanofiltration–Fluid dynamics and mass transfer characteristics, J. Membr. Sci., 494 (2015) 8–24.
  49. G. Schock, A. Miquel, Mass-transfer and pressure loss in spiral wound modules, Desalination, 64 (1987) 339–352.