1. C. Chen, W. Ma, J. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chem. Soc. Rev., 39 (2010) 4206–4219.
  2. H. Yin, K. Yu, C. Song, R. Huang, Z. Zhu, Synthesis of Au-decorated V2O5@ZnO heteronanostructures and enhanced plasmonic photocatalytic activity, ACS Appl. Mater. Inter., 6 (2014) 14851–14860.
  3. K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges, J. Phys. Chem. Lett., 1 (2010) 2655–2661.
  4. J.G. Yu, W.G. Wang, B. Cheng, B.L. Su, Enhancement of photocatalytic activity of mesoporous TiO2 powders by hydrothermal surface fluorination treatment, J. Phys. Chem. C, 113 (2009) 6743–6750.
  5. X. Liu, Z.Q. Liu, S.X. Hao, W. Chu, Facile fabrication of welldispersed silver nanoparticles loading on TiO2 nanotube arrays by electrodeposition, Mater. Lett., 80 (2012) 66–68.
  6. Z. Adriana, Doped-TiO2: A review, Recent Pat. Eng., 2 (2008) 157–164.
  7. M. Pelaeza, T.N.T. Nolan, S.C. Pillai, M.K. Seeryc, P. Falarasd, A.G. Kontosd, P.S.M. Dunlope, J.W.J. Hamiltone, J. A. Byrnee, K. O’Sheaf, M.H. Entezarig, D.D. Dionysioua, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal., B, 125 (2012) 331–349.
  8. S. Mallakpour, E. Khadem, Carbon nanotube–metal oxide nanocomposites: fabrication, properties and applications, Chem. Eng. J., 302 (2016) 344–367.
  9. T. Yamabe, M. Imade, M. Tanaka, T. Sato, Electronic structures and transport properties of carbon nanotube, Synth. Met., 117 (2001) 61–65.
  10. J. Du, L. Zhao, Y. Zeng, L. Zhang, F. Li, P. Liu, C. Liu, Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure, Carbon, 49 (2011) 1094–1100.
  11. Q. Cheng, J. Bao, J.G. Park, Z. Liang, C. Zhang, B. Wang, High mechanical performance composite conductor: multi-walled carbon nanotube sheet/bismaleimide nanocomposites, Adv. Funct. Mater., 19 (2009) 3219–3225.
  12. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes, Chem. Rev., 106 (2006) 1105–1136.
  13. Z. Nan, C. Wei, Q. Yang, Z. Tan, Thermodynamic properties of carbon nanotubes, J. Chem. Eng. Data, 54 (2009) 1367–1370.
  14. P. Diao, Z. Liu, Aligned carbon nanotubes: physics, concepts, fabrication and devices, Adv. Mater., 22 (2010) 1430–1449.
  15. S.W. Ko, M.S. Yang, H.J. Choi, Adsorption of polymer coated magnetite composite particles onto carbon nanotubes and their magnetorheology, Mater. Lett., 63 (2009) 861–863.
  16. J.W. Lee, R. Viswan, Y.J. Choi, Y. Lee, S.Y. Kim, J. Cho, Y. Jo, J.K. Kang, Facile fabrication and superparamagnetism of silicashielded magnetite nanoparticles on carbon nitride nanotubes, Adv. Funct. Mater., 19 (2009) 2213–2218.
  17. J. Chang, J.H. Lee, C.K. Najeeb, G.H. Nam, M. Lee, J.H. Kim, Area-selective growth of ZnO nanorod arrays on single-walled carbon nanotube patterns, Scr. Mater., 63 (2010) 520–523.
  18. F.F. Fang, H.J. Choi, Y. Seo, Sequential coating of magnetic carbonyliron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology, ACS Appl. Mater. Inter., 2 (2010) 54–60.
  19. B.O. Park, B.J. Park, M.J. Hato, H.J. Choi, Soft magnetic carbonyl iron microsphere dispersed in grease and its rheological characteristics under magnetic field, Colloid Polym. Sci., 289 (2010) 381–386.
  20. Y. Dong, D. Tang, C. Li, Special issue: the route to post-Si CMOS devices: from high mobility channels to graphene-like 2D nanosheets, Appl. Surf. Sci., 296 (2014) 1–7.
  21. T. An, J. Chen, X. Nie, G. Li, H. Zhang, X. Liu, H. Zhao, Synthesis of carbon nanotube–nnatase TiO2 sub-micrometer-sized sphere composite photocatalyst for synergistic degradation of gaseous styrene, ACS Appl. Mater. Inter., 4 (2012) 5988–5996.
  22. H. Wang, S. Dong, Y. Chang, J.L. Faria, Enhancing the photocatalytic properties of TiO2 by coupling with carbon nanotubes and supporting gold, J. Hazard. Mater., 235–236 (2012) 230–236.
  23. Z. Li, B. Gao, G.Z. Chen, R. Mokaya, S. Sotiropoulos, G.L. Puma, Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties, Appl. Catal., B, 110 (2011) 50–57.
  24. J.Y. Ahn, J.H. Kim, K.J. Moon, S.D. Park, S.H. Kim, Synergistic effects of the aspect ratio of TiO2 nanowires and multi-walled carbon nanotube embedment for enhancing photovoltaic performance of dye-sensitized solar cell, Nanoscale, 5 (2013) 6842–6850.
  25. T. Xin, M. Ma, H. Zhang, J. Gu, S. Wang, M. Liu, Q. Zhang, A facile approach for the synthesis of magnetic separable Fe3O4@TiO2, core–shell nanocomposites as highly recyclable photocatalysts, Appl. Surf. Sci., 288 (2014) 51–59.
  26. J. Jing, J. Li, J. Feng, W. Li, W.W. Yu, Photodegradation of quinoline in water over magnetically separable Fe3O4/TiO2 composite photocatalysts, Chem. Eng. J., 219 (2013) 355–360.
  27. K. Mandel, F. Hutter, C. Gellermann, G. Sextl, Reusable superparamagnetic nanocomposite particles for magnetic separation of iron hydroxide precipitates to remove and recover heavy metal ions from aqueous solutions, Sep. Purif. Technol., 109 (2013)144–147.
  28. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 108 (2008) 2064–2110.
  29. B. Ahmmad, Y. Kusumoto, S. Somekawa, M. Ikeda, Carbon nanotubes synergistically enhance photocatalytic activity of TiO2, Catal. Commun., 9 (2008)1410–1413.
  30. Z. Mo, C. Zhang, R. Guo, S. Meng, J. Zhang, Synthesis of Fe3O4 nanoparticles using controlled ammonia vapor diffusion under ultrasonic irradiation, Ind. Chem. Eng. Res., 50 (2011)3534–3539.
  31. J. Lu, M. Wang, C. Deng, X. Zhang, Facile synthesis of Fe3O4@ mesoporous TiO2 microspheres for selective enrichment of phosphopeptides for phosphoproteomics analysis, Talanta, 105 (2013) 20–27.
  32. W. Wang, P. Serp, P. Kalck, Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method, J. Mol. Catal., A, 235 (2005) 194–199.
  33. S. Chang, W. Liu, Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2, Appl. Catal., B, 101 (2011) 333–342.
  34. P. Zhang, Z. Mo, L. Han, X. Zhu, B. Wang, C. Zhang, Preparation and photocatalytic performance of magnetic TiO2/ montmorillonite/Fe3O4 nanocomposites, Ind. Chem. Eng. Res., 53 (2014) 8057–8061.
  35. Z. Mo, P. Zhang, D. Zuo, Y. Sun, H. Chen, Synthesis and characterization of polyaniline nanorods/Ce(OH)3–Pr2O3/ montmorillonite composites through reverse micelle template, Mater. Res. Bull., 43 (2008) 1664–1669.
  36. Y. Wang, Y. Huang, W. Ho, Biomolecule-controlled hydrothermal synthesis of C–N–S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation, J. Hazard. Mater., 169 (2009) 77–87.
  37. E. Bae, W. Choi, Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light, Environ. Sci. Technol., 37 (2003) 147–152.
  38. G. Hu, X. Meng, X. Feng, Y. Ding, S. Zhang, M. Yang, Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: preparation, characterization and photocatalytic properties, J. Mater. Sci., 42 (2007) 7162–7170.
  39. J. Matos, J. Laine, J.M. Herrmann, Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon, Appl. Catal., B, 18 (1998) 281–291.
  40. C.G. Silva, J.L. Faria, Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation, J. Photochem. Photobiol. A, 155 (2003) 133–143.
  41. J. Matos, J. Laine, J.M. Herrmann, Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania, J. Catal., 200 (2001) 10–20.
  42. Y. Yu, J.C. Yu, J.G. Yu, Y.C. Kwok, Y.K. Che, J.C. Zhao, L. Ding, W.K. Ge, P.K. Wong, Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes, Appl. Catal., A, 289 (2005) 186–196.
  43. J. Sun, M. Iwasa, L. Gao, Q.H. Zhang, Single-walled carbon nanotubes coated with titania nanoparticles, Carbon 42 (2004) 895–899.
  44. Y. Lin, Zh. Geng, H. Cai, L. Ma, J. Chen, J. Zeng, N. Pan, X. Wang, Ternary graphene–TiO2–Fe3O4 nanocomposite as a recollectable photocatalyst with enhanced durability, J. Inorg. Chem., (2012) 4439–4444.
  45. D. Beydoun, R. Amal, G. K. C. Low, S. McEvoy, Novel photocatalyst: titania-coated magnetite activity and photodissolution, J. Phys. Chem., 104 (2000) 4387–4396.
  46. P. Zhang, Z. Mo, L. Han, Y. Wang, G. Zhaoa, Ch. Zhang, Zh. Li, Magnetic recyclable TiO2/multi-walled carbon nanotube nanocomposite: synthesis, characterization and enhanced photocatalytic activity, J. Mol. Catal., A, 402 (2015) 17–22.
  47. G. Moon, D. Kim, H. Kim, A.D. Bokare, W. Choi, Platinum-like behavior of reduced graphene oxide as a cocatalyst on TiO2 for the efficient photocatalytic oxidation of arsenite, Environ. Sci. Technol. Lett., 1 (2014) 185–190.
  48. J. Zhan, H. Zhang, G. Zhu, Magnetic photocatalysts of cenospheres coated with Fe3O4/TiO2 core/shell nanoparticles decorated with Ag nanopartilces, Ceram. Int., 40 (2014) 8547–8559.
  49. V.R. Djokić, A.D. Marinković, O. Ersen, P.S. Uskoković, R.D. Petrović, V.R. Radmilović, D.T. Janaćković, The dependence of the photocatalytic activity of TiO2/carbon nanotubes nanocomposites on the modification of the carbon nanotubes, Ceram. Int., 40 (2014) 4009–4018.