1. G. Yang, G. Zhang, H. Wang, Current state of sludge production, management, treatment and disposal in China, Water Res., 78 (2015) 60–73.
  2. J. Liang, S. Huang, Y. Dai, L. Li, S. Sun, Dewaterability of five sewage sludges in Guangzhou conditioned with Fenton’s reagent/lime and pilot-scale experiments using ultrahigh pressure filtration system, Water Res., 84 (2015) 243–254.
  3. X. Wang, J. Chen, X. Yan, X. Wang, J. Zhang, J. Huang, J. Zhao, Heavy metal chemical extraction from industrial and municipal mixed sludge by ultrasound-assisted citric acid, J. Ind. Eng. Chem., 27 (2015) 368–372.
  4. Q. Wu, Y. Cui, Q. Li, J. Sun, Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA, J. Hazard. Mater., 283 (2015) 748–754.
  5. X. Ren, R. Yan, H.C. Wang, Y.Y. Kou, K.J. Chae, I.S. Kim, Y.J. Park, A.J. Wang, Citric acid and ethylene diamine tetra-acetic acid as effective washing agents to treat sewage sludge for agricultural reuse, Waste Manage., 46 (2015) 440–448.
  6. F. Suanon, Q. Sun, B. Dimon, D. Mama, C.P. Yu, Heavy metal removal from sludge with organic chelators: comparative study of N, N-bis(carboxymethyl) glutamic acid and citric acid, J. Environ. Manage., 166 (2015) 341–347.
  7. R.J. Meulepas, G. Gonzalez-Gil, F.M. Teshager, A. Witharana, P.E. Saikaly, P.N. Lens, Anaerobic bioleaching of metals from waste activated sludge, Sci. Total Environ., 514 (2015) 60–67.
  8. N.M. Zhu, M. Chen, X.J. Guo, G.Q. Hu, D. Yu, Electrokinetic removal of Cu and Zn in anaerobic digestate: Interrelation between metal speciation and electrokinetic treatments, J. Hazard. Mater., 286 (2015) 118–126.
  9. G. Peng, G. Tian, Using electrode electrolytes to enhance electrokinetic removal of heavy metals from electroplating sludge, Chem. Eng. J., 165 (2010) 388–394.
  10. G. Peng, G. Tian, J. Liu, Q. Bao, L. Zang, Removal of heavy metals from sewage sludge with a combination of bioleaching and electrokinetic remediation technology, Desalination, 271 (2011) 100–104.
  11. J. Deng, X. Feng, X. Qiu, Extraction of heavy metal from sewage sludge using ultrasound-assisted nitric acid, Chem. Eng. J., 152 (2009) 177–182.
  12. T. Golan, G. Dahan, Z. Ludmer, N. Brauner, A. Ullmann, Heavy metals extraction with the SRPTE process from two matrices – industrial sludge and river sediments, Chem. Eng. J., 236 (2014) 47–58.
  13. O. Hanay, H. Hasar, N.N. Kocer, Effect of EDTA as washing solution on removing of heavy metals from sewage sludge by electrokinetic, J. Hazard. Mater., 169 (2009) 703–710.
  14. X. Mao, R. Jiang, W. Xiao, J. Yu, Use of surfactants for the remediation of contaminated soils: a review, J. Hazard. Mater., 285 (2015) 419–435.
  15. P. Das, S. Mukherjee, R. Sen, Biosurfactant of marine origin exhibiting heavy metal remediation properties, Bioresour. Technol., 100 (2009) 4887–4890.
  16. W.-J. Chen, L.-C. Hsiao, K.K.-Y. Chen, Metal desorption from copper(II)/nickel(II)-spiked kaolin as a soil component using plant-derived saponin biosurfactant, Process Biochem., 43 (2008) 488–498.
  17. S. Wang, C.N. Mulligan, Rhamnolipid biosurfactant-enhanced soil flushing for the removal of arsenic and heavy metals from mine tailings, Process Biochem., 44 (2009) 296–301.
  18. M. Ye, M. Sun, J. Wan, Y. Feng, Y. Zhao, D. Tian, F. Hu, X. Jiang, Feasibility of lettuce cultivation in sophoroliplid-enhanced washed soil originally polluted with Cd, antibiotics, and antibiotic-resistant genes, Ecotoxicol. Environ. Saf., 124 (2016) 344–350.
  19. R.N.Y. Catherine, N. Mulligana, B.F. Gibbsc, Heavy metal removal from sediments by biosurfactants, J. Hazard. Mater., 85 (2001) 111–125.
  20. P. Jiménez-Peñalver, T. Gea, A. Sánchez, X. Font, Production of sophorolipids from winterization oil cake by solid-state fermentation: optimization, monitoring and effect of mixing, Biochem. Eng. J., 115 (2016) 93–100.
  21. Y. Qi, D. Szendrak, R.T.W. Yuen, A.F.A. Hoadley, G. Mudd, Application of sludge dewatered products to soil and its effects on the leaching behaviour of heavy metals, Chem. Eng. J., 166 (2011) 586–595.
  22. J.-y. Liu, S.-y. Sun, Total concentrations and different fractions of heavy metals in sewage sludge from Guangzhou, China, Trans. Nonferrous Met. Soc. China, 23 (2013) 2397–2407.
  23. M. Sprynskyy, Solid–liquid–solid extraction of heavy metals (Cr, Cu, Cd, Ni and Pb) in aqueous systems of zeolite–sewage sludge, J. Hazard. Mater., 161 (2009) 1377–1383.
  24. A. Popenda, M. Włodarczyk-Makuła, The application of biosurfactants into removal of selected micropollutants from soils and sediments, Desal. Wat. Treat., 57 (2015) 1255–1261.
  25. W.-C. Chen, R.-S. Juang, Y.-H. Wei, Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms, Biochem. Eng. J., 103 (2015) 158–169.
  26. A. Salmani Abyaneh, M.H. Fazaelipoor, Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation, J. Environ. Manage., 165 (2016) 184–187.
  27. C.N. Mulligan, Environmental applications for biosurfactants, Environ. Pollut., 133 (2005) 183–198.
  28. B. Dong, X. Liu, L. Dai, X. Dai, Changes of heavy metal speciation during high-solid anaerobic digestion of sewage sludge, Bioresour. Technol., 131 (2013) 152–158.
  29. A. Fuentes, M. Llorens, J. Saez, M.A. Isabel Aguilar, J.F. Ortuno, V.F. Meseguer, Comparative study of six different sludges by sequential speciation of heavy metals, Bioresour. Technol., 99 (2008) 517–525.
  30. X.Z. Yuan, Y.T. Meng, G.M. Zeng, Y.Y. Fang, J.G. Shi, Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation, Colloids Surf., A, 317 (2008) 256–261.
  31. Y.S. Açıkel, Use of Biosurfactants in the Removal of Heavy Metal Ions from Soils, Springer Netherlands, Vol. 20, 2011, pp. 183–223.
  32. R. Parthasarathi, P.K. Sivakumaar, Biosurfactant mediated remediation process evaluation on a mixture of heavy metal spiked topsoil using soil column and batch washing methods, Soil Sediment Contam., 20 (2011) 892–907.
  33. G.L. Maddikeri, P.R. Gogate, A.B. Pandit, Improved synthesis of sophorolipids from waste cooking oil using fed batch approach in the presence of ultrasound, Chem. Eng. J., 263 (2015) 479–487.