References

  1. H. Chaudhuri, S. Dash, S. Ghorai, S. Pal, A. Sarkar, SBA-16: application for the removal of neutral, cationic, and anionic dyes from aqueous medium, J. Environ. Chem. Eng., 4 (2016) 157–166.
  2. R. Triboulet, Growth of ZnO bulk crystals: a review, Prog. Cryst. Growth Charact. Mater., 60 (2014) 1–14.
  3. I. Udom, M.K. Ram, E.K. Stefanakos, A.F. Hepp, D.Y. Goswami, One dimensional-ZnO nanostructures: synthesis, properties and environmental applications, Mat. Sci. Semicon. Proc., 16 (2013) 2070–2083.
  4. K. Ocakoglu, S.A. Mansour, S. Yildirimcan, A.A. Al-Ghamdi, F. El-Tantawy, F. Yakuphanoglu, Microwave-assisted hydrothermal synthesis and characterization of ZnO nanorods, Spectrochim. Acta, 148 (2015) 362–368.
  5. V. Kumar, M. Gohain, S. Som, V. Kumar, B.C.B. Bezuindenhoudt, H.C. Swart, Microwave assisted synthesis of ZnO nanoparticles for lighting and dye removal application, Physica B, 480 (2016) 36–41.
  6. J. Ungula, B.F. Dejene, Effect of solvent medium on the structural, morphological and optical properties of ZnO nanoparticles synthesized by the sol–gel method, Physica B, 480 (2016) 26–30.
  7. P. Srinivasan, B. Subramanian, Y. Djaoued, J. Robichaud, T. Sharma, R. Bruning, Facile synthesis of mesoporous nanocrystalline ZnO bipyramids and spheres: characterization, and photocatalytic activity, Mater. Chem. Phys., 155 (2015) 162–170.
  8. F. Wang, X. Qin, D. Zhu, Y. Meng, L. Yang, Y. Ming, PEG-assisted hydrothermal synthesis and photoluminescence of flower-like ZnO microstructures, Mater. Lett., 117 (2014) 131–133.
  9. M. Ganapathi, D. Jayaseelan, S. Guhanathan, Microwave assisted efficient synthesis of diphenyl substituted pyrazoles using PEG-600 as solvent - a green approach, Ecotoxicol. Environ. Saf., 121 (2015) 87–92.
  10. S.V. Nipane, P.V. Korake, G.S. Gokavi, Graphene-zinc oxide nanorod nanocomposite as photocatalyst for enhanced degradation of dyes under UV light irradiation, Ceram. Int., 41 (2015) 4549–4557.
  11. G.M. Neelgund, A. Oki, Z. Luo, ZnO and cobalt phthalocyanine hybridized graphene: efficient photocatalysts for degradation of rhodamine B, J. Colloid Interf. Sci., 430 (2014) 257–264.
  12. C.C. Hsueh, B.Y. Chen, Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola, J. Hazard. Mater., 141 (2007) 842–849.
  13. C. Belpaire, T. Reyns, C. Geeraerts, J.V. Loco, Toxic textile dyes accumulate in wild European eel Anguilla anguilla, Chemosphere, 138 (2015) 784–791.
  14. S. Ameen, M.S. Akhtar, M. Nazim, H.S. Shin, Rapid photocatalytic degradation of crystal violet dye over ZnO flower nanomaterials, Mater. Lett., 96 (2013) 228–232.
  15. N.H.H. Hairom, A.W. Mohammad, A.A.H. Kadhum, Influence of zinc oxide nanoparticles in the nanofiltration of hazardous Congo red dyes, Chem. Eng. J., 260 (2015) 907–915.
  16. H.K. Seo, H.S. Shin, Study on photocatalytic activity of ZnO nanodisks for the degradation of rhodamine B dye, Mater. Lett., 159 (2015) 265–268.
  17. K. Buvaneswari, R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, Effect of FeWO4 doping on the photocatalytic activity of ZnO under visible light irradiation, Appl. Surf. Sci., 356 (2015) 333–340.
  18. F. Fan, Y. Feng, P. Tang, D. Li, Facile synthesis and photocatalytic performance of ZnO nanoparticles self-assembled spherical aggregates, Mater. Lett., 158 (2015) 290–294.
  19. Z.J. Yu, M. R. Kumar, D.L. Sun, L.T. Wang, R.Y. Hong, Large scale production of hexagonal ZnO nanoparticles using PVP as a surfactant, Mater. Lett., 166 (2016) 284–287.
  20. S. Yusan, A. Bampaiti, S. Aytas, S. Erenturk, M.A.A. Aslani, Synthesis and structural properties of ZnO and diatomitesupported ZnO nanostructures, Ceram. Int., 42 (2016) 2158–2163.
  21. M. Aslam, I.M.I. Ismail, T. Almeelbi, N. Salah, S. Chandrasekaran, A. Hameed, Enhanced photocatalytic activity of V2O5–ZnO composites for the mineralization of nitrophenols, Chemosphere, 117 (2014) 115–123.
  22. N. Huang, J. Shu, Z. Wang, M. Chen, C. Ren, W. Zhang, Onestep pyrolytic synthesis of ZnO nanorods with enhanced photocatalytic activity and high photostability under visible light and UV light irradiation, J. Alloys Compd., 648 (2015) 919–929.
  23. Y. Caglar, K. Gorgun, S. Aksoy, Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis, Spectrochim. Acta, 138 (2015) 617–622.
  24. W. Feng, P. Huang, B. Wang, C. Wang, W. Wang, T. Wang, S. Chen, R. Lv, Y. Qin, J. Ma, Solvothermal synthesis of ZnO with different morphologies in dimethylacetamide media, Ceram. Int., 42 (2016) 2250–2256.
  25. W. Promnopas, T. Thongtem, S. Thongtem, Effect of microwave power on energy gap of ZnO nanoparticles synthesized by microwaving through aqueous solutions, Superlattice. Microst., 78 (2015) 71–78.
  26. K.D. Bhatte, D.N. Sawant, R.A. Watile, B.M. Bhanage, A rapid, one step microwave assisted synthesis of nanosize zinc oxide, Mater. Lett., 69 (2012) 66–68.
  27. M. Mittal, M. Sharma, O.P. Pandey, UV–Visible light induced photocatalytic studies of Cu doped ZnO NPs prepared by co-precipitation method, Sol. Energy, 110 (2014) 386–397.
  28. S.R. Shirsath, D.V. Pinjari, P.R. Gogate, S.H. Sonawane, A.B. Pandit, Ultrasound assisted synthesis of doped TiO2 nanoparticles: characterization and comparison of effectiveness for photocatalytic oxidation of dyestuff effluent, Ultrason. Sonochem., 20 (2013) 277–286.
  29. S. Aghabeygi, L. Hashemi, A. Morsali, Synthesis and characterization of ZnO nano-rods via thermal decomposition of zinc(II) coordination polymers and their photocatalytic properties, J. Inorg. Organomet. Polym., 26 (2016) 495–499.
  30. L. Curkovic, D. Ljubas, H. Juretic, Photocatalytic decolorization kinetics of diazo dye Congo red aqueous solution by UV/TiO2 nanoparticles, React. Kinet. Mech. Catal., 99 (2010) 201–208.
  31. M.H. Habibi, M.H. Rahmati, The effect of operational parameters on the photocatalytic degradation of Congo red organic dye using ZnO–CdS core–shell nano-structure coated on glass by Doctor Blade method, Spectrochim. Acta, 137 (2015) 160–164.
  32. T. Linda, S. Muthupoongodi, X.S. Shajan, S. Balakumar, Photocatalytic degradation of Congo red and crystal violet dyes on cellulose/PVC/ZnO composites under UV light irradiation, Mater. Today, 3 (2016) 2035–2041.
  33. L. Ren, Y. Li, J. Hou, X. Zhao, C. Pan, Preparation and enhanced photocatalytic activity of TiO2 nanocrystals with internal pores, ACS. Appl. Mater. Inter., 6 (2014) 1608–1615.
  34. G.R. Dillip, T.V.M. Sreekanth, S.W. Joo, Tailoring the bandgap of N-rich graphitic carbon nitride for enhanced photocatalytic activity, Ceram. Int., 43 (2017) 6437–6445.
  35. S.V.P. Vattikuti, I.L. Ngo, C. Byon, Physicochemcial characteristic of CdS-anchored porous WS2 hybrid in the photocatalytic degradation of crystal violet under UV and visible light irradiation, Solid State Sci., 61 (2016) 121–130.
  36. Y.L. Pang, A.Z. Abdullah, Comparative study on the process behavior and reaction kinetics in sonocatalytic degradation of organic dyes by powder and nanotubes TiO2, Ultrason. Sonochem., 19 (2012) 642–651.
  37. A. Khan, Z. Rehman, M. Rehman, R. Khan, Zulfiqar, A. Waseem, A. Iqbal, Z.H. Shah, CdS nanocapsules and nanospheres as efficient solar light-driven photocatalysts for degradation of Congo red dye, Inorg. Chem. Commun., 72 (2016) 33–41.
  38. Y.J. Lin, M.S. Wang, C.J. Liu, H.J. Huang, Defects, stress and abnormal shift of the (002) diffraction peak for Li-doped ZnO films, Appl. Surf. Sci., 256 (2010) 7723–7727.