References

  1. V. Fulya, MENA Regional Water Outlook: Part II Desalination Using Renewable Energy, Stuttgart, Germany, 2011.
  2. Global Water Intelligence, Desalination Capacity by Technology in GCC, 2013. Available at www.desaldata.com.
  3. R. Al Hashemi, S. Zarreen, A. Al Raisi, F.A. Al Marzooqi, S.W. Hasan, A review of desalination trends in the Gulf Cooperation Council countries, Int. Interdisc. J. Sci. Res., 1 (2014) 72–96.
  4. A.M. Al Mutawa, W.M. A lMurabti, N.A. Ruwaili, A.S. Al Oraifi, A. Al Oraifi, A. Al Arafati, A. Nasrullah, M.R. Al Bahow, S.M. Al Anzi, M. Rashidi, S.Z. Al Moosa, Desalination in the GCC The History, the Present & the Future, General Secretariat of the Cooperation Council for the Arab States of the Gulf (GCC), 2014.
  5. M.A. Darwish, Desalination Engineering, Balaban Desalination Publications, Hopkinton, 2015.
  6. Food and Agriculture Organization of the United Nations (FAO), FAO’s Information System on Water and Agriculture, (2011). Available at http://www.fao.org/nr/water/aquastat/countries_regions/index.stm (Accessed June 25, 2016).
  7. D. Sagie, E. Feinerman, E. Aharoni, Potential of solar desalination in Israel and in its close vicinity, Desalination, 139 (2001) 21–33.
  8. M.T. Chaibi, An overview of solar desalination for domestic and agriculture water needs in remote arid areas, Desalination, 127 (2000) 119–133.
  9. B. Bouchekima, A solar desalination plant for domestic water needs in arid areas of south Algeria, Desalination, 153 (2002) 65–69.
  10. A.M. El-Nashar, The economic feasibility of small solar MED seawater desalination plants for remote arid areas, Desalination, 134 (2001) 173–186.
  11. P. Palenzuela, A.S. Hassan, G. Zaragoza, D.-C. Alarcón-Padilla, Steady state model for multi-effect distillation case study: Plataforma Solar de Almería MED pilot plant, Desalination, 337 (2014) 31–42.
  12. K.M. Bataineh, Multi-effect desalination plant combined with thermal compressor driven by steam generated by solar energy, Desalination, 385 (2016) 39–52.
  13. T. Pankratz, IDA Desalination Yearbook, Global Water Intelligence (GWI) DesalData, 2014.
  14. P. Palenzuela, D.C. Alarcón-Padilla, G. Zaragoza, Large-scale solar desalination by combination with CSP: techno-economic analysis of different options for the Mediterranean Sea and the Arabian Gulf, Desalination, 366 (2015) 130–138.
  15. M. Darwish, F. Al-Juwayhel, H. Abdulraheim, Multi-effect boiling systems from an energy viewpoint, Desalination, 194 (2006) 22–39.
  16. European Union, ADIRA Handbook A Guide to Autonomous Desalination System Concepts, Euro-Mediterranean Regional Programme for Water Management (MEDA), Istanbul Technical University, 2008.
  17. M.A. Darwish, F. Al-Juwayhel, H.K. Abdulraheim, Multi-effect boiling systems from an energy viewpoint, Desalination, 194 (2006) 22–39.
  18. M.T. Chaibi, A.M. El-Nashar, Solar Thermal Processes A Review of Solar Thermal Energy Technologies for Water Desalination, G. Micale, L. Rizzuti, A. Cipollina, Eds., Seawater Desalin. Conv. Renew. Energy Process., Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 131–163.
  19. İ.H. Yılmaz, M.S. Söylemez, Design and computer simulation on multi-effect evaporation seawater desalination system using hybrid renewable energy sources in Turkey, Desalination, 291 (2012) 23–40.
  20. N. Ghaffour, V.K. Reddy, M. Abu-Arabi, Technology development and application of solar energy in desalination: MEDRC contribution, Renew. Sustain. Energy Rev., 15 (2011) 4410–4415.
  21. Z. Chen, G. Xie, Z. Chen, H. Zheng, C. Zhuang, Field test of a solar seawater desalination unit with triple-effect falling film regeneration in northern China, Sol. Energy., 86 (2012) 31–39.
  22. L. Yang, T. Shen, B. Zhang, S. Shen, K. Zhang, Exergy analysis of a solar-assisted MED desalination experimental unit, Desal. Wat. Treat., 51 (2013) 1272–1278.
  23. Y. Kim, K. Thu, A. Myat, K.C. Ng, Numerical simulation of solar-assisted multi-effect distillation (SMED) desalination systems, Desal. Wat. Treat., 51 (2013) 1242–1253.
  24. D. Alarcón, P. Fernández, Design and Setup of a Hybrid Solar Seawater Desalination System : The Aquasol Project, Proceedings of ISES 2005 Solar World Congress, International Solar Energy Society, Orlando, USA, 2005.
  25. O.A. Hamed, H. Kosaka, K.H. Bamardouf, K. Al-Shail, A.S. Al-Ghamdi, Concentrating solar power for seawater thermal desalination, Desalination, 396 (2016) 70–78.
  26. I.B. Askari, M. Ameri, Techno economic feasibility analysis of Linear Fresnel solar field as thermal source of the MED/TVC desalination system, Desalination, 394 (2016) 1–17.
  27. D.C. Alarcón-Padilla, L. García-Rodríguez, J. Blanco-Gálvez, Design recommendations for a multi-effect distillation plant connected to a double-effect absorption heat pump: a solar desalination case study, Desalination, 262 (2010) 11–14.
  28. M.A. Sharaf, A.S. Nafey, L. García-Rodríguez, Exergy and thermo-economic analyses of a combined solar organic cycle with multi effect distillation (MED) desalination process, Desalination, 272 (2011) 135–147.
  29. P. Palenzuela, D.-C. Alarcón-Padilla, G. Zaragoza, Concentrating Solar Power and Desalination Plants, Spring International Publishing, AG, Switzerland, 2015.
  30. M.D. Stuber, C. Sullivan, S.A. Kirk, J.A. Farrand, P. V. Schillaci, B.D. Fojtasek, A.H. Mandell, Pilot demonstration of concentrated solar-powered desalination of subsurface agricultural drainage water and other brackish groundwater sources, Desalination, 355 (2015) 186–196.
  31. M. Gholinejad, A. Bakhtiari, M. Bidi, Effects of tracking modes on the performance of a solar MED plant, Desalination, 380 (2016) 29–42.
  32. R. Cipollone, A. Cinocca, P. Talebbeydokhti, R. Cipollone, A. Cinocca, P. Talebbeydokhti, Integration between concentrated solar power plant and desalination, Desal. Wat. Treat., 57 (2016) 28086–28099.
  33. S. Casimiro, J. Cardoso, C. Ioakimidis, J.F. Mendes, C. Mineo, A. Cipollina, MED parallel system powered by concentrating solar power (CSP). Model and case study : Trapani, Sicily, Desal. Wat. Treat., 55 (2015) 3253–3266.
  34. B. Ortega-delgado, P. Palenzuela, D.C. Alarcón-padilla, Quasi-steady state simulations of thermal vapor compression multi-effect distillation plants coupled to parabolic trough solar thermal power plants, Desal. Wat. Treat., 57 (2016) 23085–23096.
  35. R. Olwig, T. Hirsch, C. Sattler, H. Glade, L. Schmeken, S. Will, A. Ghermandi, R. Messalem, Techno-economic analysis of combined concentrating solar power and desalination plant configurations in Israel and Jordan, Desal. Wat. Treat., 41 (2012) 9–25.
  36. A. Kouta, F. Al-Sulaiman, M. Atif, S. Bin Marshad, Entropy, exergy, and cost analyses of solar driven cogeneration systems using supercritical CO2 Brayton cycles and MEE-TVC desalination system, Energy Convers. Manage., 115 (2016) 253–264.
  37. F. Trieb, Concentrating Solar Power for Seawater Desalination, Aqua-CSP Study Report, Stuttgart, Germany, 2007.
  38. M.A. Darwish, H. Abdulrahim, R.H. Mohtar, Solar Power Desalting Plant in Qatar, Lambert Academic Publishing, Saarbrucken, Deutschland, 2012.
  39. V.G. Gude, Energy storage for desalination processes powered by renewable energy and waste heat sources, Appl. Energy., 137 (2015) 877–898.
  40. M.A. Sharaf, A.S. Nafey, L. Garcia-Rodriguez, Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes, Energy, 36 (2011) 2753–2764.
  41. A.M. Weiner, D.H. Blum, J.H.L. V, A.F. Ghoniem, Design of a Hybrid RO-MED Solar Desalination System for Treating Agricultural Drainage Water in California, Proceedings of International Desalination Association, World Congress Desalination Water Reuse, San Diego, California, USA, 2015.
  42. R. González, L. Roca, F. Rodríguez, Economic optimal control applied to a solar seawater desalination plant, Comput. Chem. Eng., 71 (2014) 554–562.
  43. A.M. El-Nashar, Water from the Sun Case Study: The Abu Dhabi Solar Desalination Plant, 2001.
  44. D.C. Alarcón-Padilla, L. García-Rodríguez, J. Blanco-Gálvez, Experimental assessment of connection of an absorption heat pump to a multi-effect distillation unit, Desalination, 250 (2010) 500–505.
  45. U. Fisher, A. Aviram, A. Gendel, Ashdod low temperature multi-effect desalination plant, Desalination, 55 (1985) 13–32.
  46. B. Franquelin, F. Murat, C. Temstet, Application of multi-effect process at high temperature for large seawater desalination plants, Desalination, 45 (1983) 81–92.
  47. B. Ohlemann, D. Emmermann, Advanced barge mounted VTE/ VC seawater desalting plant, Desalination, 45 (1983) 39–47.
  48. C. Temster, J. Laborie, Dual Purpose Desalination Plant — High Efficiency Multi-effect Evaporator Operating with Turbine for Power Production, Proceedings of IDA World Conference, Abu Dhabi, 1995, pp. 297–308.
  49. A. De La Calle, J. Bonilla, L. Roca, P. Palenzuela, Dynamic modeling and performance of the first cell of a multi-effect distillation plant, Appl. Therm. Eng., 70 (2014) 410–420.
  50. A. de la Calle, J. Bonilla, L. Roca, P. Palenzuela, Dynamic modeling and simulation of a solar-assisted multi-effect distillation plant, Desalination, 357 (2015) 65–76.
  51. C. Napoli, B. Rioux, Evaluating the economic viability of solarpowered desalination: Saudi Arabia as a case study, Int. J. Water Resour. Dev., 32 (2015) 1–16.
  52. H. Mokhtari, M. Bidi, M. Gholinejad, Thermoeconomic analysis and multiobjective optimization of a solar desalination plant, J. Sol. Energy., 2014 (2014) 1–13.
  53. A. Pugsley, A. Zacharopoulos, J.D. Mondol, M. Smyth, Global applicability of solar desalination, Renew. Energy, 88 (2016) 200–219.
  54. M. Papapetrou, M. Wieghaus, C. Bieramp, Roadmap for the Development of Desalination Powered by Renewable Energy, Promotion of renewable energy for water Production through desalination (ProDes) Project, 2010.
  55. J.H. Reif, W. Alhalabi, Solar-thermal powered desalination: its significant challenges and potential, Renew. Sustain. Energy Rev., 48 (2015) 152–165.