References

  1. S. Ochiai, S. Nagao, M. Yamamoto, T. Itono, K. Kashiwaya, K. Fukui, H. Iida, Deposition records in lake sediments in western Japan of radioactive Cs from the Fukushima Dai-ichi nuclear power plant accident, Appl. Radiat. Isot., 81 (2013) 366–370.
  2. P. Thakur, S. Ballard, R. Nelson, An overview of Fukushima radionuclides measured in the northern hemisphere, Sci. Total Environ., 458–460 (2013) 577–613.
  3. B. Thornton, S. Ohnishi, T. Ura, N. Odano, S. Sasaki, T. Fujita, T. Watanabe, K. Nakata, T. Ono, D. Ambe, Distribution of local 137Cs anomalies on the seafloor near the Fukushima Dai-ichi Nuclear Power Plant, Mar. Pollut. Bull., 74 (2013) 344–350.
  4. M. Inoue, H. Kofuji, K. Fujimoto, Y. Furusawa, K. Yoshida, S. Nagao, M. Yamamoto, Y. Hamajima, M. Minakawa, Delivery mechanism of (134)Cs and (137)Cs in seawater off the Sanriku Coast, Japan, following the Fukushima Dai-ichi NPP accident, J. Environ. Radioact., 137 (2014) 113–118.
  5. M. Yamaguchi, A. Kitamura, Y. Oda, Y. Onishi, Predicting the long-term (137)Cs distribution in Fukushima after the Fukushima Dai-ichi nuclear power plant accident: a parameter sensitivity analysis, J. Environ. Radioact., 135 (2014) 135–146.
  6. K. Tanaka, H. Iwatani, A. Sakaguchi, Q. Fan, Y. Takahashi, Sizedependent distribution of radiocesium in riverbed sediments and its relevance to the migration of radiocesium in river systems after the Fukushima Daiichi Nuclear Power Plant accident, J. Environ. Radioact., 139 (2015) 390–397.
  7. T. Kinouchi, K. Yoshimura, T. Omata, Modeling radiocesium transport from a river catchment based on a physically-based distributed hydrological and sediment erosion model, J. Environ. Radioact., 139 (2015) 407–415.
  8. W. Yu, J. He, W. Lin, Y. Li, W. Men, F. Wang, J. Huang, Distribution and risk assessment of radionuclides released by Fukushima nuclear accident at the northwest Pacific, J. Environ. Radioact., 142 (2015) 54–61.
  9. W. Men, J. He, F. Wang, Y. Wen, Y. Li, J. Huang, X. Yu, Radioactive status of seawater in the northwest Pacific more than one year after the Fukushima nuclear accident, Sci. Rep., 5 (2015) 7757.
  10. Ministry of the Environment, Guideline for Method of Measurement of Radioactive Concentration, 2013, p. 46.
  11. D. Brune, J. Dubois, S. Hellstrom, Improvements in Applied Gamma- Ray Spectrometry with Germanium Semiconductor Detector, Aktiebolaget Atomenergi, Stockholm, Sweden, 1965, AE-174.
  12. F.S. Goulding, Y. Stone, Semiconductor Radiation Detectors: basic principles and some uses of a recent tool that has revolutionized nuclear physics are described, Science, 170 (1970) 280–289.
  13. L.F. Pires, J.R. de Macedo, M.D. de Souza, O.O.S. Bacchi, K. Reichardt, Gamma-ray-computed tomography to investigate compaction on sewage-sludge-treated soil, Appl. Radiat. Isot., 59 (2003) 17–25.
  14. I.T. Muminov, A.K. Muhamedov, B.S. Osmanov, A.A. Safarov, A.N. Safarov, Application of NaI(Tl) detector for measurement of natural radionuclides and (137)Cs in environmental samples: new approach by decomposition of measured spectrum, J Environ. Radioact., 84 (2005) 321–331.
  15. C. Tsabaris, C. Bagatelas, T. Dakladas, C.T. Papadopoulos, R. Vlastou, G.T. Chronis, An autonomous in situ detection system for radioactivity measurements in the marine environment, Appl. Radiat. Isot., 66 (2008) 1419–1426.
  16. M.S. Rahman, G. Cho, B.S. Kang, Deconvolution of gamma-ray spectra obtained with NAI(Tl) detector in a water tank, Radiat. Prot. Dosim., 135 (2009) 203–210.
  17. J.A. Caffrey, K.A. Higley, A.T. Farsoni, S. Smith, S. Menn, Development and deployment of an underway radioactive cesium monitor off the Japanese coast near Fukushima Dai-ichi, J. Environ. Radioact., 111 (2012) 120–125.
  18. H. Tsuji, T. Yasutaka, Y. Kawabe, T. Onishi, T. Komai, Distribution of dissolved and particulate radiocesium concentrations along rivers and the relations between radiocesium concentration and deposition after the nuclear power plant accident in Fukushima, Water Res., 60 (2014) 15–27.
  19. N. Yoshikawa, H. Obara, M. Ogasa, S. Miyazu, N. Harada, M. Nonaka, 137Cs in irrigation water and its effect on paddy fields in Japan after the Fukushima nuclear accident, Sci. Total Environ., 481 (2014) 252–259.
  20. K. Yoshimura, Y. Onda, A. Sakaguchi, M. Yamamoto, Y. Matsuura, An extensive study of the concentrations of particulate/dissolved radiocaesium derived from the Fukushima Dai-ichi Nuclear Power Plant accident in various river systems and their relationship with catchment inventory, J. Environ. Radioact., 139 (2015) 370–378.
  21. J. Shapiro, Radiation Protection: A Guide for Scientists, Regulators and Physicians, 4th ed., Harvard University Press, 2002, pp. 58–59.
  22. D. Shahbazi-Gahrouei, M. Gholami, S. Setayandeh, A review on natural background radiation, Adv. Biomed. Res., 2 (2013) 65.
  23. S.B. Samat, S. Green, A.H. Beddoe, The 40K activity of one gram of potassium, Phys. Med. Biol., 42 (1997) 407–413.
  24. Ministry of Health, Labour and Welfare, Manual on the Radiation Measurement of Tap Water, 2011, p. 49 (in Japanese).
  25. J. Uhrovčík, Strategy for determination of LOD and LOQ values—some basic aspects, Talanta, 119 (2014) 178–180.