1. S.T. Oh, J.R. Kim, G.C. Premier, T.H. Lee, C. Kim, W.T. Sloan, Sustainable wastewater treatment: how might microbial fuel cells contribute, Biotechnol. Adv., 28 (2010) 871–881.
  2. P. Aeltermann, K. Rabaey, P. Clauwaert, W. Verstraete, Microbial fuel cells for wastewater treatment, Water Sci. Technol., 54 (2006) 9–15.
  3. S. Lohner, A. Tiehm, Application of electrolysis to stimulate microbial reductive PCE dechlorination and oxidative VC biodegradation, Environ. Sci. Technol., 43 (2009) 7098–7104.
  4. S. Lohner, D. Becker, K.-M. Mangold, A. Tiehm, Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process, Environ. Sci. Technol., 45 (2011) 6491–6497.
  5. K. Rabaey, W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation, Trends Biotechnol., 23 (2005) 291–298.
  6. F.J. Hernández-Fernández, A. Pérez de los Ríos, M.J. Salar-García, V.M. Ortiz-Martínez, L.J. Lozano-Blanco, C. Godínez, F. Tomás- Alonso, J. Quesada-Medina, Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment, Fuel Process. Technol., 138 (2015) 284–297.
  7. G. Antonopoulou, K. Stamatelatou, S. Bebelis, G. Lyberatos, Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell, Biochem. Eng. J., 50 (2010) 10–15.
  8. M. Rahimnejad, G. Najafpour, A.A. Ghoreyshi, Effect of Mass Transfer on Performance of Microbial Fuel Cell, Mass Transfer in Chemical Engineering Processes, Iran, Vol. 5, InTech, 2011, pp. 233–250.
  9. Y. Sharma, B. Li, The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs), Bioresour. Technol., 101 (2010) 1844–1850.
  10. Z. Hu, Electricity generation by a baffle-chamber membraneless microbial fuel cell, J. Power Sources, 179 (2008) 27–33.
  11. C. Santoro, A. Agrios, U. Pasogullari, B. Li, Effects of gas diffusion layer (GDL) and micro porous layer (MPL) on cathode performance in microbial fuel cells (MFCs), Int. J. Hydrogen Energy, 36 (2011) 13096–13104.
  12. S.-J. You, X.-H. Wang, J.-N. Zhang, J.-Y. Wang, N.-Q. Ren, X.-B. Gong, Fabrication of stainless steel mesh gas diffusion electrode for power generation in microbial fuel cell, Biosens. Bioelectron., 26 (2011) 2142–2146.
  13. A.E.W. Horst, K.-M. Mangold, D. Holtmann, Application of gas diffusion electrodes in bioelectrochemical syntheses and energy conversion, Biotechnol. Bioeng., 113 (2016) 260–267.
  14. A. Bulan, J. Kintrup, R. Weber, Gas Diffusion Electrode and Process for Production Thereof, US 20110311903 A1, Bayer Material Science AG, USA, 2011.
  15. T.H.M. Smits, C. Devenoges, K. Szynalski, J. Maillard, C. Holliger, Development of a real-time PCR method for quantification of the three genera Dehalobacter, Dehalococcoides, and Desulfitobacterium in microbial communities, J. Microbiol. Methods, 57 (2004) 369–378.
  16. D.E. Holmes, K.T. Finneran, R.A. O’Neil, D.R. Lovely, Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uraniumcontaminated aquifer sediments, Appl. Environ. Microbiol., 68 (2002) 2300–2306.
  17. D.E. Cummings, O.L. Snoeyenbos-West, D.T. Newby, A.M. Niggemyer, D.R. Lovley, L.A. Achenbach, R.F. Rosenzweig, R.F., Diversity of Geobacteraceae species inhabiting metalpolluted freshwater lake sediments ascertained by 16S rDNA analyses, Microb. Ecol., 46 (2003) 257–269.
  18. S.G. Todorova, A.M. Costello, Design of Shewanella-specific 16S rRNA primers and application to analysis of Shewanella in a minerotrophic wetland, Environ. Microbiol., 8 (2006) 426–432.
  19. H. Liu, B.E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol., 38 (2004) 4040–4046.
  20. H. Liu, S. Cheng, B.E. Logan, Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell, Environ. Sci. Technol., 39 (2005) 658–662.
  21. B.E. Logan, S. Cheng, V. Watson, G. Estadt, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells, Environ. Sci. Technol., 41 (2007) 3341–3346.
  22. A.P. Borole, C.Y. Hamilton, T. Vishnivetskaya, D. Leak, C. Andras, Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flowthrough systems, Biochem. Eng. J., 48 (2009) 71–80.
  23. H. Wang, S.C. Jiang, Y. Wang, B. Xiao, Substrate removal and electricity generation in a membrane-less microbial fuel cell for biological treatment of wastewater, Bioresour. Technol., 138 (2013) 109–116.
  24. C. Santoro, B. Li, P. Christiani, G. Squadrito, Power generation of microbial fuel cells (MFCs) with low cathodic platinum loading, Int. J. Hydrogen Energy, 38 (2013) 692–700.
  25. G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen, D.R. Lovley, Extracellular electron transfer via microbial nanowires, Nature, 435 (2005) 1098–1101.
  26. K.-J. Chae, M.-J. Choi, J.-W. Lee, K.-Y. Kim, I.S. Kim, Effect of different substrates on the performance, bacterial diversity and bacterial viability in microbial fuel cells, Bioresour. Technol., 100 (2009) 3518–3525.
  27. S. Jung, J.M. Regan, Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors, Appl. Microbiol. Biotechnol., 77 (2007) 393–402.
  28. S. Cheng, H. Liu, B.E. Logan, Increased performance of singlechamber microbial fuel cells an improved cathode structures, Electrochem. Commun., 8 (2006) 489–494.
  29. S. Cheng, H. Liu, B.E. Logan, Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing, Environ. Sci. Technol., 40 (2006) 2426–2432.
  30. C. Santoro, Y. Lei, B. Li, P. Cristiani, Power generation from wastewater using single chamber microbial fuel cells (MFCs) with platinum-free cathodes and pre-colonized anodes, Biochem. Eng. J., 62 (2012) 8–16.
  31. H. Liu, S. Cheng, B.E. Logan, Power Generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration, Environ. Sci. Technol., 39 (2005) 5488–5493.