1. S. Ge, P. Champagne, W.C. Plaxton, G.B. Leite, F. Marazzi, Microalgal cultivation with waste streams and metabolic constraints to triacylglycerides accumulation for biofuel production, Biofuels, Bioprod. Biorefin., 11 (2017) 325–343.
  2. H. Chen, D. Zhou, G. Luo, S. Zhang, J. Chen, Macroalgae for biofuels production: progress and perspectives, Renew. Sustain. Energy Rev., 47 (2015) 427–437.
  3. Y. Shen, Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production, RSC Adv., 4 (2014) 49672–49722.
  4. N. Neveux, A.K.L. Yuen, C. Jazrawi, M. Magnusson, B.S. Haynes, A.F. Masters, A. Montoya, N.A. Paul, T. Maschmeyer, R. de Nys, Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae, Bioresour. Technol., 155 (2014) 334–341.
  5. A. Cole, Y. Dinburg, B.S. Haynes, Y. He, M. Herskowitz, C. Jazrawi, M. Landau, X. Liang, M. Magnusson, T. Maschmeyer, A.F. Masters, N. Meiri, N. Neveux, R. de Nys, N. Paul, M. Rabaev, R. Vidruk-Nehemya, A.K.L. Yuen, From macroalgae to liquid fuel via waste-water remediation, hydrothermal upgrading, carbon dioxide hydrogenation and hydrotreating, Energy Environ. Sci., 9 (2016) 1828–1840.
  6. J.-H. Yun, V.H. Smith, R.C. Pate, Managing nutrients and system operations for biofuel production from freshwater macroalgae, Algal Res., 11 (2015) 13–21.
  7. S. Ge, P. Champagne, Nutrient removal, microalgal biomass growth, harvesting and lipid yield in response to centrate wastewater loadings, Water Res., 88 (2016) 604–612.
  8. E.W. Wilde, J.R. Benemann, Bioremoval of heavy metals by the use of microalgae, Biotechnol. Adv., 11 (1993) 781–812.
  9. N. Neveux, M. Magnusson, L. Mata, A. Whelan, R. de Nys, N. Paul, The treatment of municipal wastewater by the macroalga Oedogonium sp. and its potential for the production of biocrude, Algal Res., 13 (2016) 284–292.
  10. S. Ge, P. Champagne, Cultivation of the marine macroalgae Chaetomorpha linum in municipal wastewater for nutrient recovery and biomass production, Environ. Sci. Technol., 51 (2017) 3558–3566.
  11. P.H. de Paula Silva, N.A. Paul, R. de Nys, L. Mata, Enhanced production of green tide algal biomass through additional carbon supply, PLoS ONE, 8 (2013) e81164.
  12. A.J. Cole, R. de Nys, N.A. Paul, Removing constraints on the biomass production of freshwater macroalgae by manipulating water exchange to manage nutrient flux, PLoS ONE, 9 (2014) e101284.
  13. E. Marinho-Soriano, S.O. Nunes, M.A.A. Carneiro, D.C. Pereira, Nutrients’ removal from aquaculture wastewater using the macroalgae Gracilaria birdiae, Biomass Bioenergy, 33 (2009) 327–331.
  14. S. Ge, M. Madill, P. Champagne, Use of freshwater macroalgae Spirogyra sp. for the treatment of municipal wastewaters and biomass production for biofuel applications, Biomass Bioenergy (2017). doi: 10.1016/j.biombioe.2017.03.014.
  15. R.S. Baghel, N. Trivedi, C. Reddy, A simple process for recovery of a stream of products from marine macroalgal biomass, Bioresour. Technol., 203 (2016) 160–165.
  16. A.B. Ross, J.M. Jones, M.L. Kubacki, T. Bridgeman, Classification of macroalgae as fuel and its thermochemical behaviour, Bioresour. Technol., 99 (2008) 6494–6504.
  17. M. Garcia-Vaquero, M. Hayes, Red and green macroalgae for fish and animal feed and human functional food development, Food Rev. Int., 32 (2016) 15–45.
  18. C.S. Kumar, P. Ganesan, P. Suresh, N. Bhaskar, Seaweeds as a source of nutritionally beneficial compounds — review, J. Food Sci. Technol., 45 (2008) 1–13.
  19. R.F. Hechinger, K.D. Lafferty, J.P. McLaughlin, B.L. Fredensborg, T.C. Huspeni, J. Lorda, P.K. Sandhu, J.C. Shaw, M.E. Torchin, K.L. Whitney, Food webs including parasites, biomass, body sizes, and life stages for three California/Baja California estuaries, Ecology, 92 (2011) 791.
  20. L.M.P. Valente, A. Gouveia, P. Rema, J. Matos, E.F. Gomes, I.S. Pinto, Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles, Aquaculture, 252 (2006) 85–91.
  21. G. Kulshreshtha, B. Rathgeber, G. Stratton, N. Thomas, F. Evans, A. Critchley, J. Hafting, B. Prithiviraj, Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality, and gut microbiota of layer hens, Poultr. Sci., 93 (2014) 2991–3001.
  22. A. Walsh, T. Sweeney, C. O’Shea, D. Doyle, J. O’Doherty, Effect of dietary laminarin and fucoidan on selected microbiota, intestinal morphology and immune status of the newly weaned pig, Br. J. Nutr., 110 (2013) 1630–1638.
  23. M.R. Ventura, J.I.R. Castañon, J.M. McNab, Nutritional value of seaweed (Ulva rigida) for poultry, Anim. Feed Sci. Technol., 49 (1994) 87–92.
  24. A. El-Deek, A.M. Brikaa, Effect of different levels of seaweed in starter and finisher diets in pellet and mash form on performance and carcass quality of ducks, Int. J. Poultr. Sci., 8 (2009) 1014–1021.
  25. C.J. Zhu, Y.K. Lee, Determination of biomass dry weight of marine microalgae, J. Appl. Phycol., 9 (1997) 189–194.
  26. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), Washington, D.C., USA, 2005.
  27. A. Bruhn, J. Dahl, H.B. Nielsen, L. Nikolaisen, M.B. Rasmussen, S. Markager, B. Olesen, C. Arias, P.D. Jensen, Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion, Bioresour. Technol., 102 (2011) 2595–2604.
  28. F.E. Msuya, A. Neori, Effect of water aeration and nutrient load level on biomass yield, N uptake and protein content of the seaweed Ulva lactuca cultured in seawater tanks, J. Appl. Phycol., 20 (2008) 1021–1031.
  29. S. Körner, S.K. Das, S. Veenstra, J.E. Vermaat, The effect of pH variation at the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemna gibba, Aquat. Bot., 71 (2001) 71–78.
  30. P.J. Harrison, C.L. Hurd, Nutrient physiology of seaweeds: application of concepts to aquaculture, Cah. Biol. Mar., 42 (2001) 71–82.
  31. H. Huang, L. Huang, Q. Zhang, Y. Jiang, L. Ding, Chlorination decomposition of struvite and recycling of its product for the removal of ammonium-nitrogen from landfill leachate, Chemosphere, 136 (2015) 289–296.
  32. F. Mijangos, M. Kamel, G. Lesmes, D. Muraviev, Synthesis of struvite by ion exchange isothermal supersaturation technique, React. Funct. Polym., 60 (2004) 151–161.
  33. S. Sode, A. Bruhn, T.J.S. Balsby, M.M. Larsen, A. Gotfredsen, M.B. Rasmussen, Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta), Bioresour. Technol., 146 (2013) 426–435.
  34. M. da Silva Copertino, T. Tormena, U. Seeliger, Biofiltering efficiency, uptake and assimilation rates of Ulva clathrata (Roth) J. Agardh (Clorophyceae) cultivated in shrimp aquaculture waste water, J. Appl. Phycol., 21 (2009) 31–45.
  35. M.M. Nielsen, A. Bruhn, M.B. Rasmussen, B. Olesen, M.M. Larsen, H.B. Møller, Cultivation of Ulva lactuca with manure for simultaneous bioremediation and biomass production, J. Appl. Phycol., 24 (2012) 449–458.
  36. H.-W. Yen, D.E. Brune, Anaerobic co-digestion of algal sludge and waste paper to produce methane, Bioresour. Technol., 98 (2007) 130–134.
  37. S. Ge, J.G. Usack, C.M. Spirito, L.T. Angenent, Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction, Environ. Sci. Technol., 49 (2015) 8012–8021.
  38. B. Davies, T. Morris, Physiological parameters in laboratory animals and humans, Pharm. Res., 10 (1993) 1093–1095.
  39. D.A. Johnson, B.L. Welsh, Detrimental effects of Ulva lactuca (L.) exudates and low oxygen on estuarine crab larvae, J. Exp. Mar. Biol. Ecol., 86 (1985) 73–83.
  40. B.A. Belgrad, B.D. Griffen, The influence of diet composition on fitness of the blue crab, Callinectes sapidus, PLoS ONE, 11 (2016) e0145481.
  41. J.S. Sangha, D. Fan, A.H. Banskota, R. Stefanova, W. Khan, J. Hafting, J. Craigie, A.T. Critchley, B. Prithiviraj, Bioactive components of the edible strain of red alga, Chondrus crispus, enhance oxidative stress tolerance in Caenorhabditis elegans, J. Funct. Foods, 5 (2013) 1180–1190.
  42. G.F. Combs, Algae (Chlorella) as a source of nutrients for the chick, Science, 116 (1952) 453–454.
  43. T. Ollivett, S. McGuirk, Salt poisoning as a cause of morbidity and mortality in neonatal dairy calves, J. Vet. Intern. Med., 27 (2013) 592–595.
  44. J.W. Finnie, P.C. Blumbergs, M.M. Williamson, Alzheimer type II astrocytes in the brains of pigs with salt poisoning (water deprivation/intoxication), Aust. Vet. J., 88 (2010) 405–407.
  45. M. Devin, R. Peacock, H. Stence, Development of Growout Techniques for Juvenile Sea Urchins Strongylocentrotus droebachiensis, J.M. Lawrence, O. Guzmán, Eds., Sea Urchins: Fisheries and Ecology, DEStech Publications Inc., Lancaster, USA, 2004, pp. 246–254.