References

  1. A.J. Balkema, H.A. Preisig, R. Otterpohl, F.J. Lambert, Indicators for the sustainability assessment of wastewater treatment systems, Urban Water, 4 (2002) 153–161.
  2. J. Zhang, Q. She, V.W. Chang, C.Y. Tang, R.D. Webster, Mining nutrients (N, K, P) from urban source-separated urine by forward osmosis dewatering, Environ. Sci. Technol., 48 (2014) 3386–3394.
  3. Y.T. Endale, B.D. Yirsaw, S.L. Asfaw, Pathogen reduction efficiency of on-site treatment processes in eco-sanitation system, Waste Manage. Res., 30 (2012) 750–754.
  4. B.B. Lind, Z. Ban, S. Bydén, Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite, Bioresour. Technol., 73 (2000) 169–174.
  5. J.A. Wilsenach, C.A.H. Schuurbiers, M.C.M. Van Loosdrecht, Phosphate and potassium recovery from source separated urine through struvite precipitation, Water Res., 41 (2007) 458–466.
  6. K.M. Udert, M. Wächter, Complete nutrient recovery from source-separated urine by nitrification and distillation, Water Res., 46 (2012) 453–464.
  7. T.J. Clough, L.M. Condron, Biochar and the nitrogen cycle: introduction, J. Environ. Qual., 39 (2010) 1218–1223.
  8. A. Taghizadeh-Toosi, T.J. Clough, R.R. Sherlock, L.M. Condron, A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability, Plant Soil, 353 (2012) 73–84.
  9. T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281 (2006) 70–87.
  10. K. Lutchmiah, A.R.D. Verliefde, K. Roest, L.C. Rietveld, E.R. Cornelissen, Forward osmosis for application in wastewater treatment: a review, Water Res., 58 (2014) 179–197.
  11. W. Xue, K. Yamamoto, T. Tobino, Membrane fouling and longterm performance of seawater-driven forward osmosis for enrichment of nutrients in treated municipal wastewater, J. Membr. Sci., 499 (2016) 555–562.
  12. W. Xue, T. Tobino, F. Nakajima, K. Yamamoto, Seawater-driven forward osmosis for enriching nitrogen and phosphorous in treated municipal wastewater: effect of membrane properties and feed solution chemistry, Water Res., 69 (2015) 120–130.
  13. A.J. Ansari, F.I. Hai, W.E. Price, L.D. Nghiem, Phosphorus recovery from digested sludge centrate using seawater-driven forward osmosis, Sep. Purif. Technol., 163 (2016) 1–7.
  14. A.J. Ansari, F.I. Hai, W.E. Price, J.E. Drewes, L.D. Nghiem, Forward osmosis as a platform for resource recovery from municipal wastewater – a critical assessment of the literature, J. Membr. Sci., 529 (2017) 195–206.
  15. S. Zhang, K.Y. Wang, T.S. Chung, H. Chen, Y.C. Jean, G. Amy, Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer, J. Membr. Sci., 360 (2010) 522–535.
  16. J.T. Arena, B. McCloskey, B.D. Freeman, J.R. McCutcheon, Surface modification of thin film composite membrane support layers with polydopamine: enabling use of reverse osmosis membranes in pressure retarded osmosis, J. Membr. Sci., 375 (2011) 55–62.
  17. M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, W. Meier, Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z, Proc. Natl. Acad. Sci. USA, 104 (2007) 20719–20724.
  18. J.R. McCutcheon, M. Elimelech, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis, J. Membr. Sci., 284 (2006) 237–247.
  19. A. Zhu, P.D. Christofides, Y. Cohen, Energy consumption optimization of reverse osmosis membrane water desalination subject to feed salinity fluctuation, Ind. Eng. Chem. Res., 48 (2009) 9581–9589.
  20. Y. Xu, X. Peng, C.Y. Tang, Q.S. Fu, S. Nie, Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module, J. Membr. Sci., 348 (2010) 298–309.
  21. H. Choi, K. Zhang, D.D. Dionysiou, D.B. Oerther, G.A. Sorial, Influence of cross-flow velocity on membrane performance during filtration of biological suspension, J. Membr. Sci., 248 (2005) 189–199.
  22. J.R. McCutcheon, M. Elimelech, Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes, J. Membr. Sci., 318 (2008) 458–466.
  23. Y.C. Kim, M. Elimelech, Adverse impact of feed channel spacers on the performance of pressure retarded osmosis, Environ. Sci. Technol., 46 (2012) 4673–4681.
  24. T.Y. Cath, D. Adams, A.E. Childress, Membrane contactor processes for wastewater reclamation in space: II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater, J. Membr. Sci., 257 (2005) 111–119.
  25. T.Y. Cath, S. Gormly, E.G. Beaudry, M.T. Flynn, V.D. Adams, A.E. Childress, Membrane contactor processes for wastewater reclamation in space: part I. Direct osmotic concentration as pretreatment for reverse osmosis, J. Membr. Sci., 257 (2005) 85–98.
  26. S. Lee, C. Boo, M. Elimelech, S. Hong, Comparison of fouling behaviour in forward osmosis (FO) and reverse osmosis (RO), J. Membr. Sci., 365 (2010) 34–39.
  27. B. Mi, M. Elimelech, Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents, J. Membr. Sci., 348 (2010) 337–345.