1. C. Reimann, D. Banks, Setting action levels for drinking water: Are we protecting our health or our economy (or our backs!)?, Sci. Total Environ., 332 (2004) 13–21.
  2. C.D.W. Blackburn, P.J. McClure, Foodborne pathogens: Hazards, risk analysis, and control, CRC Press, England, 2002.
  3. K.A. Reynolds, K.D. Mena, C.P. Gerba, Risk of waterborne illness via drinking water in the United States, in: D. Whitacre, ed., Reviews of environmental contamination and toxicology, Springer New York, 2008, pp. 117–158.
  4. E.D. Ongley, Control of water pollution from agriculture, Food & Agriculture Org., 1996.
  5. X. Qian, A review on the status of non-point source pollution of chemical fertilizers and pesticides in China, Rural Eco-Environ., 2 (1996) 39–43.
  6. J. Liu, J. Diamond, China’s environment in a globalizing world, Nature, 435 (2005) 1179–1186.
  7. G.R. Hallberg, Pesticides pollution of groundwater in the humid United States, Agric. Ecosyst. Environ., 26 (1989) 299–367.
  8. C. Wu, C. Maurer, Y. Wang, S. Xue, D.L. Davis, Water pollution and human health in China, Environ. Health Persp., 107 (1999) 251–256.
  9. B.J. Brownawell, H. Chen, J.M. Collier, J.C. Westall, Adsorption of organic cations to natural materials, Environ. Sci. Technol., 24 (1990) 1234–1241.
  10. S. Wang, Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng J., 156 (2010) 11–24.
  11. W. Zou, R. Han, Z. Chen, J. Shi, L. Hongmin, Characterization and properties of manganese oxide coated zeolite as adsorbent for removal of copper (II) and lead (II) ions from solution, J. Chem. Eng. Data, 51 (2006) 534–541.
  12. A.K. Kaygun, S. Akyil, Study of the behavior of thorium adsorption on PAN/zeolite composite adsorbent, J. Hazard. Mater., 147 (2007) 357–362.
  13. P. Kaali, M. Pérez-Madrigal, E. Stromberg, R.E. Aune, G. Czel, S. Karlsson, The influence of Ag+, Zn2+ and Cu2+ exchanged zeolite on antimicrobial and long term in vitro stability of medical grade polyether polyurethane, Express Polym. Lett., 5 (2011) 1028–1040.
  14. J. Jiang, G. Li, Q. Ding, K. Mai, Ultraviolet resistance and antimicrobial properties of ZnO-supported zeolite filled isotactic polypropylene composites, Polym. Degrad. Stab., 97 (2012) 833–838.
  15. V. Velusamy, K. Arshak, O. Korostynska, K. Oliwa, C. Adley, An overview of foodborne pathogen detection: In the perspective of biosensors, Biotechnol. Adv., 28 (2010) 232–254.
  16. N. Savage, M.S. Diallo, Nanomaterials and water purification: Opportunities and challenges, J. Nanopart. Res., 7 (2005) 331– 342.
  17. Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications, Water Res., 42 (2008) 4591–4602.
  18. J. Theron, J.A. Walker, T.E. Cloete, Nanotechnology and water treatment: Applications and emerging opportunities, Crit. Rev. Microbiol., 34 (2008) 43–69.
  19. T. Pradeep, Noble metal nanoparticles for water purification: A critical review, Thin Solid Films, 517 (2009) 6441–6478.
  20. R.A. Rudel, D.E. Camann, J.D. Spengler, L.R. Korn, J.G. Brody, Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust, Environ. Sci. Technol., 37 (2003) 4543–4553.
  21. Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni, Appl. Environ. Microbiol., 77 (2011) 2325– 2331.
  22. M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D. Jimenez de Aberasturi, I.R.D. Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Antibacterial properties of nanoparticles, Trends Biotechnol., 30 (2012) 499–511.
  23. K. Nagaveni, G. Sivalingam, M. Hegde, G. Madras, Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2, Environ. Sci. Technol., 38 (2004) 1600–1604.
  24. T. Aarthi, G. Madras, Photocatalytic degradation of rhodamine dyes with nano-TiO2, Ind. Eng. Chem. Res., 46 (2007) 7–14.
  25. K.E. Engates, H.J. Shipley, Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: Effect of particle size, solid concentration, and exhaustion, Environ. Sci. Pollut. R., 18 (2011) 386–395.
  26. P.-C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum, W.A. Jacoby, Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism, Appl. Environ. Microbiol., 65 (1999) 4094–4098.
  27. L. Chen, B.Y. He, S. He, T.J. Wang, C.L. Su, Y. Jin, Fe-Ti oxide nano-adsorbent synthesized by co-precipitation for fluoride removal from drinking water and its adsorption mechanism, Powder Technol., 227 (2012) 3–8.
  28. T.H. Pham, B.K. Lee, J. Kim, Improved adsorption properties of a nano zeolite adsorbent toward toxic nitrophenols, Process Saf. Environ., 104 (2016) 314–322.
  29. P.O. Olutiola, O. Famurewa, H.G. Sonntag, An introduction to general microbiology: A practical approach, 1st edn., Hygieneinstitut der Universitat Heidelberg, Germany, 1991.
  30. E. Psillakis, D. Mantzavinos, N. Kalogerakis, Monitoring the sonochemical degradation of phthalate esters in water using solid-phase microextraction, Chemosphere, 54 (2004) 849–857.
  31. G. Satpathy, Y.K. Tyagi, R.K. Gupta, Development and validation of multi-residue analysis of 82 pesticides in grapes and pomegranate as per the requirements of the European Union (EU) and Codex Alimentarius Using GC-MS/MS with compound based screening, Am. J. Food Sci. Technol., 2 (2014) 53–61.
  32. M.I.R. Mamun, J.H. Park, J.-H. Choi, H.K. Kim, W.J. Choi, S.-S. Han, K. Hwang, N.-I. Jang, M.E. Assayed, M.A. El-Dib, H.-C. Shin, A.M.A. El-Aty, J.-H. Shim, Development and validation of a multiresidue method for determination of 82 pesticides in water using GC, J. Sep. Sci., 32 (2009) 559–574.
  33. R.S. Breed, W.D. Dotterrer, The number of colonies allowable on satisfactory agar plates, J. Bacteriol., 1 (1916) 321–331.
  34. EPA, Method 8061A, in: E.P. Agency, USA, 1996.
  35. E. Merck, A.G.E. Merck, M.D. Merck, The Testing of Water, E. Merck, 1974.
  36. W. Horwitz, Official Methods of Analysis of the AOAC International, The Association, 2012.
  37. B. Ghosh, D. Ramamoorthy, Effects of silver nanoparticles on Escherichia coli and it’s implications, Int. J. Chem. Sci., 8 (2010) S31–S40.
  38. A.M.P. McDonnell, D. Beving, A. Wang, W. Chen, Y. Yan, Hydrophilic and antimicrobial zeolite coatings for gravityindependent water separation, Adv. Funct. Mater., 15 (2005) 336–340.
  39. K. Shameli, M.B. Ahmad, M. Zargar, W.M.Z.W. Yunus, N.A. Ibrahim, Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity, Int. J. Nanomed., 6 (2011) 331–341.
  40. L. Shirazi, E. Jamshidi, M. Ghasemi, The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size, Cryst. Res. Technol., 43 (2008) 1300–1306.
  41. S. Mintova, V. Valtchev, T. Onfroy, C. Marichal, H. Knözinger, T. Bein, Variation of the Si/Al ratio in nanosized zeolite Beta crystals, Microporous Mesoporous Mater., 90 (2006) 237–245.
  42. K. Ojha, N.C. Pradhan, A.N. Samanta, Zeolite from fly ash: Synthesis and characterization, Bull. Mater. Sci., 27 (2004) 555– 564.
  43. C. Bouvy, W. Marine, R. Sporken, B. Su, Photoluminescence properties and quantum size effect of ZnO nanoparticles confined inside a faujasite X zeolite matrix, Chem. Phys. Lett., 428 (2006) 312–316.
  44. M.M. Treacy, J.B. Higgins, Collection of simulated XRD powder patterns for zeolites, 5th ed., Elsevier, 2007.
  45. H. Xin, A. Koekkoek, Q. Yang, R. van Santen, C. Li, E.J.M. Hensen, A hierarchical Fe/ZSM-5 zeolite with superior catalytic performance for benzene hydroxylation to phenol, Chem. Commun., 48 (2009) 7590–7592.
  46. Y. Cheng, L.J. Wang, J.S. Li, Y.C. Yang, X.Y. Sun, Preparation and characterization of nanosized ZSM-5 zeolites in the absence of organic template, Mater. Lett., 59 (2005) 3427– 3430.
  47. T.F. Robin, A.B. Ross, A.R. Lea-Langton, J.M. Jones, Stability and activity of doped transition metal zeolites in the hydrothermal processing, Front. Energy Res., 3 (2015) 51.
  48. C.S. Jeon, K. Baek, J.K. Park, Y.K. Oh, S.D. Lee, Adsorption characteristics of As (V) on iron-coated zeolite, J. Hazar. Mater., 163 (2009) 804–808.
  49. K. Shameli, M.B. Ahmad, M. Zargar, W.M.Z.W. Yunus, N.A. Ibrahim, Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity, Int. J. Nanomedicine, 6 (2011) 331.
  50. H. Jahangirian, M. Shah Ismail, M.J. Haron, R. Rafiee-Moghaddam, K. Shameli, S. Hosseini, K. Kalantari, R. Khandanlou, E. Gharibshahi, S. Soltaninejad, Synthesis and characterization of zeolite/Fe3O4 nanocomposites by green quick precipitation method, Dig. J. Nanomaterials Bios, 4 (2013) 4.
  51. Standard Methods for Examination of Water and Wastewater, 20 edn., APHA, Washington DC, USA, 1998.
  52. Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications, Water Res., 42 (2008) 4591–4602.
  53. T. Stanić, A. Daković, A. Živanović, M. Tomašević–Čanović, V. Dondur, S. Milićević, Adsorption of arsenic (V) by iron (III)– modified natural zeolitic tuff, Environ. Chem. Lett., 7 (2009) 161–166.
  54. J. Perić, M. Trgo, N.V. Medvidović, Removal of zinc, copper and lead by natural zeolite—a comparison of adsorption isotherms, Water Res., 38 (2004) 1893–1899.
  55. H. Tahir, Comparative trace metal contents in sediments and liquid wastes from tanneries and the removal of chromium using zeolite 5A, Electron J. Environ. Agric. Food Chem., 4 (2005) 1021–1032.
  56. B. Silva, H. Figueiredo, C. Quintelas, I.C. Neves, T. Tavares, Zeolites as supports for the biorecovery of hexavalent and trivalent chromium, Microporous Mesoporous Mater., 116 (2008) 555–560.
  57. Y. Sun, Q. Fang, J. Dong, X. Cheng, J. Xu, Removal of fluoride from drinking water by natural stilbite zeolite modified with Fe(III), Desalination, 277 (2011) 121–127.
  58. S. Samatya, Ü. Yüksel, M. Yüksel, N. Kabay, Removal of fluoride from water by metal ions (Al3+, La3+ and ZrO2+) loaded natural zeolite, Separ. Sci. Technol., 42 (2007) 2033–2047.
  59. H. Guan, E. Bestland, C. Zhu, H. Zhu, D. Albertsdottir, J. Hutson, C.T. Simmons, M. Ginic–Markovic, X. Tao, A.V. Ellis, Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites, J. Hazard. Mater., 183 (2010) 616–621.
  60. M.S. Onyango, D. Kuchar, M. Kubota, H. Matsuda, Adsorptive removal of phosphate ions from aqueous solution using synthetic zeolite, Ind. Eng. Chem. Res., 46 (2007) 894–900.
  61. X. Gao, H.m. Li, J.s. Guo, Z.x. Yu, F.q. Wang, L. Lu, Removal of phthalate esters from drinking water with zeolite filter column, J. Civil, Archit. Environ. Eng., 6 (2009) 128–131.
  62. Y.H. Chen, N.C. Shang, D.C. Hsieh, Decomposition of dimethyl phthalate in an aqueous solution by ozonation with high silica zeolites and UV radiation, J. Hazard. Mater., 157 (2008) 260–268.
  63. D. Barlokova, Natural zeolites in the water treatment process, Slovak J. Civil Eng., 16 (2008) 8–12.
  64. K. Margeta, A. Farkas, M. Šiljeg, N.Z. Logar, Natural Zeolites in Water Treatment—How Effective is Their Use, INTECH Open Access Publisher, 2013.
  65. E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci., 280 (2004) 309–314.
  66. M.J. Hajipour, K.M. Fromm, A. AkbarAshkarran, D. Jimenez de Aberasturi, I.R.D. Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Antibacterial properties of nanoparticles, Trends Biotechnol., (2012).
  67. H. Uppal, S.S. Tripathy, S. Chawla, B. Sharma, M.K. Dalai, S.P. Singh, S. Singh, N. Singh, Study of cyanide removal from contaminated water using zinc peroxide nanomaterial, J. Environ. Sci., 55 (2017) 76–85.
  68. S. Gunti, M. McCrory, A. Kumar, M.K. Ram, Enhanced photocatalytic remediation using graphene (G)-titanium oxide (TiO2) nanocomposite material in visible light radiation, Am. J. Analyt. Chem., 7 (2016) 576.
  69. M.S. Mostafa, A.S.A. Bakr, A.M. El Naggar, E.S.A. Sultan, Water decontamination via the removal of Pb (II) using a new generation of highly energetic surface nano-material: Co2+, Mo6+ LDH, J. Colloid Interface Sci., 461 (2016) 261–272.
  70. A.G. El-Deen, R.M. Boom, H.Y. Kim, H. Duan, M.B. Chan-Park, J.H. Choi, Flexible 3D nanoporous graphene for desalination and bio-decontamination of brackish water via asymmetric capacitive deionization, ACS Appl. Mater. Interfaces, 8 (2016) 25313–25325.
  71. M. Amina, T. Amna, M.S. Hassan, N.M. Al Musayeib, S.S.S. Al-Deyab, M.S. Khil, Low temperature synthesis of manganese tungstate nanoflowers with antibacterial potential: Future material for water purification, Korean J. Chem. Eng., 33 (2016) 3169–3174.
  72. S. Piri, Z.A. Zanjani, F. Piri, A. Zamani, M. Yaftian, M. Davari, Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb (II) ions from contaminated waters: Kinetics and thermodynamic study, J. Environ. Health Sci. Eng., 14 (2016) 20.
  73. R. Cheng, C. Cheng, P. Liu, L. Shi, Z. Ma, Effect of Ni morphology on removal of pentachlorophenol with Fe/Ni nanomaterials, Water Sci. Technol.: Water Supply, 16 (2016) 810–816.
  74. E. Luster, D. Avisar, I. Horovitz, L. Lozzi, M.A. Baker, R. Grilli, H. Mamane, N-doped TiO2-coated ceramic membrane for carbamazepine degradation in different water qualities, Nanomaterials, 7 (2017) 206.
  75. M.S. Hassan, T. Amna, S.S. Al-Deyab, H.C. Kim, M.S. Khil, Monodispersed 3D MnWO4-TiO2 composite nanoflowers photocatalysts for environmental remediation, Curr. Appl. Phys., 15 (2015) 753–758.
  76. Y. Yurekli, Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes, J. Hazard. Mater., 309 (2016) 53–64.
  77. S. Yekta, M. Sadeghi, H. Ghaedi, N. Shahabfar, Removal of uranium (U (VI)) ions using NiO NPs/Ag-clinoptilolite zeolite composite adsorbent from drinking water: equilibrium, kinetic and thermodynamic studies, Int. J. Bio-Inorg. Hybr. Nanomater, 5 (2016) 279–295.
  78. J. Choi, S. Chan, G. Yip, H. Joo, H. Yang, F.K. Ko, Palladiumzeolite nanofiber as an effective recyclable catalyst membrane for water treatment, Water Res., 101 (2016) 46–54.