1. D. Chakraborty, S. Maji, A. Bandyopadhyay, S. Basu, Biosorption of cesium-137 and strontium-90 by mucilaginous seeds of Ocimum basilicum, Bioresource Technol., 98 (2007) 2949–2952.
  2. H. Esfandian, H. Fakhraee, A. Azizi, Removal of strontium ions by synthetic nano sodalite zeolite from aqueous solution, Int. J. Eng-Transact. B: Applications, 29 (2016) 160.
  3. Y. Sabriye, E. Sema, Adsorption characterization of strontium on PAN/zeolite composite adsorbent, World. J. Nuclear Sci. Technol., 1 (2011) 6–12.
  4. Z. Cheng, Z. Gao, W. Ma, Q. Sun, B. Wang, X. Wang, Preparation of magnetic Fe3O4 particles modified sawdust as the adsorbent to remove strontium ions, Chem. Eng. J., 209 (2012) 451–457.
  5. M. Khani, Biosorption of strontium by a nonliving brown marine algae, Padina sp, Sep. Sci. Technol., 47 (2012) 1886–1897.
  6. A. Zhang, Y. Wei, H. Hoshi, M. Kumagai, Synthesis of a novel silica-based macroporous polymer containing TODGA Chelating agent and its application in the chromatographic separation of Mo (VI) and Zr (IV) from diethylenetriaminepentaacetic acid, Sep. Sci. Technol., 40 (2005) 811–827.
  7. P. Chandrasekhar, Conducting polymers, Fundamentals and Applications: A Practical Approach., 1999, 83 p.
  8. P. Chandrasekhar, Conducting polymers, fundamentals and applications: a practical approach, Springer, 1999.
  9. M. Nishizawa, T. Matsue, I. Uchida, Fabrication of a pH-sensitive microarray electrode and applicability to biosensors, Sensors Actuat. B: Chem., 13 (1993) 53–56.
  10. B. Saoudi, N. Jammul, M.-L. Abel, M.M. Chehimi, G. Dodin, DNA adsorption onto conducting polypyrrole, Synthetic Met., 87 (1997) 97–103.
  11. X. Zhang, R. Bai, Surface electric properties of polypyrrole in aqueous solutions, Langmuir, 19 (2003) 10703–10709.
  12. C. Weidlich, K.-M. Mangold, K. Jüttner, Conducting polymers as ion-exchangers for water purification, Electroch. Acta, 47 (2001) 741–745.
  13. R. Ansari, Polypyrrole conducting electroactive polymers: synthesis and stability studies, J. Chem., 3 (2006) 186–201.
  14. S.N. Azizi, N. Asemi, Parameter optimization of the fungicide (Vapam) sorption onto soil modified with clinoptilolite by Taguchi method, J. Environ. Sci. Health Part B., 45 (2010) 766–773.
  15. S. Deng, R. Bai, J.P. Chen, Aminated polyacrylonitrile fibers for lead and copper removal, Langmuir, 19 (2003) 5058–5064.
  16. P. Chethan, B. Vishalakshi, Synthesis of ethylenediamine modified chitosan and evaluation for removal of divalent metal ions, Carbohyd. Polym., 97 (2013) 530–536.
  17. B. Mathew, V.R. Pillai, Polymer-metal complexes of amino functionalized divinylbenzene-crosslinked polyacrylamides, Polymer, 34 (1993) 2650–2658.
  18. P. Viel, S. Palacin, F. Descours, C. Bureau, F. Le Derf, J. Lyskawa, M. Salle, Electropolymerized poly-4-vinylpyridine for removal of copper from wastewater, Appl. Surf. Sci., 212 (2003) 792–796.
  19. P.A. Kumar, S. Chakraborty, Fixed-bed column study for hexavalent chromium removal and recovery by short-chain polyaniline synthesized on jute fiber, J. Hazard. Mater., 162 (2009) 1086–1098.
  20. E. Kaçan, Strontium ion removal from aqueous solution using activated carbon produced from textile sewage sludges: effect of ZnCl2, Usak Univ. J. Mater. Sci., 3 (2014) 165.
  21. M.S. Baei, H. Esfandian, A. A. Nesheli, Removal of nitrate from aqueous solutions in batch systems using activated perlite: an application of response surface methodology, Asia-Pacific J. Chem. Eng., 11 (2016) 437–447.
  22. S. Subramaniam, A. Palanisamy, A. Sivasubramanian, Box– Behnken designed adsorption based elution–unique separation process for commercially important acetyl shikonin from Arnebia nobilis, RSC Adv., 5 (2015) 6265–6270.
  23. J.W. Choi, K.B. Lee, K.Y. Park, S.Y. Lee, D.J. Kim, Comparison between Ti-and Si-based mesostructures for the removal of phosphorous from aqueous solution, Environ. Prog. Sustain. Energy, 31 (2012) 100–106.
  24. H. Esfandian, M. Parvini, B. Khoshandam, A. Samadi-Maybodi, Removal of diazinon from aqueous solutions in batch systems using Cu-modified sodalite zeolite: An application of response surface methodology, Int. J. Eng-Transact. B: Applications., 28 (2015) 1552.
  25. A. Igder, A.A. Rahmani, A. Fazlavi, M.H. Ahmadi, A. Azqhandi, M. Hossein, M.H. Omidi, Box-Behnken design of experiments investigation foradsorption of Cd2+ onto carboxymethyl chitosan magnetic nanoparticles, J. Mining. Environ., 3 (2012) 51–59.
  26. F. Ghorbani, H. Younesi, S.M. Ghasempouri, A.A. Zinatizadeh, M. Amini, A. Daneshi, Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae, Chem. Eng. J., 145 (2008) 267–275.
  27. B. Alizadeh, M. Ghorbani, M.A. Salehi, Application of polyrhodanine modified multi-walled carbon nanotubes for high efficiency removal of Pb(II) from aqueous solution, J. Mol. Liq., 220 (2016) 142–149.
  28. S.A. Kosa, G. Al-Zhrani, M.A. Salam, Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline, Chem. Eng. J., 181 (2012) 159–168.
  29. T.A. Saleh, A. Sarı, M. Tuzen, Optimization of parameters with experimental design for the adsorption of mercury using polyethylenimine modified-activated carbon, J. Environ. Chem. Eng., 5 (2017) 1079–1088.
  30. S. Raissi, Developing new processes and optimizing performance using response surface methodology, World Academy of Science, Eng. Technol., 49 (2009) 1039–1042.
  31. S. Yusan, S. Erenturk, Adsorption characterization of strontium on PAN/zeolite composite adsorbent, World. J. Nuclear. Sci. Technol., 1 (2011) 6–12.
  32. S.A. Ali, S.A. Haladu, A novel cross-linked polyzwitterion/anion having pH-responsive carboxylate and sulfonate groups for the removal of Sr2+ from aqueous solution at low concentrations, Reactive Func. Polym., 73 (2013) 796–804.
  33. L. Wang, C. Wan, D.-J. Lee, J.-H. Tay, X. Chen, X. Liu, Y. Zhang, Adsorption–desorption of strontium from waters using aerobic granules, J. Taiwan Inst. Chem. Eng., 44 (2013) 454–457.
  34. P. Wu, Y. Dai, H. Long, N. Zhu, P. Li, J. Wu, Z. Dang, Characterization of organo-montmorillonites and comparison for Sr (II) removal: equilibrium and kinetic studies, Chem. Eng. J., 191 (2012) 288–296.