References

  1. L. Addams, G. Boccaletti, M. Kerlin, M. Stuchtey, W.R. Group, McKinsey and Company Charting Our Water Future: Economic Frameworks to Inform Decision-making, 2030 Water Resources Group, 2009.
  2. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  3. K. Spiegler, Y. El-Sayed, The energetics of desalination processes, Desalination, 134 (2001) 109–128.
  4. X. Lu, X. Bian, L. Shi, Preparation and characterization of NF composite membrane, J. Membr. Sci., 210 (2002) 3–11.
  5. J. Schaep, B. Van der Bruggen, S. Uytterhoeven, R. Croux, C. Vandecasteele, D. Wilms, E. Van Houtte, F. Vanlerberghe, Removal of hardness from groundwater by nanofiltration, Desalination, 119 (1998) 295–302.
  6. H.D.M. Sombekke, D.K. Voorhoeve, P. Hiemstra, Environmental impact assessment of groundwater treatment with nanofiltration, Desalination, 113 (1997) 293–296.
  7. M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete? Electrochim. Acta., 55 (2010) 3845–3856.
  8. A.M. Johnson, A.W. Venolia, R.G. Wilbourne, J. Newman, C.M. Wong, W.S. Gilliam, The electrosorb process for desalting water, Washington: U.S. Dept. of the Interior 1970.
  9. Y. Oren, A. Soffer, Electrochemical parametric pumping, J. Electrochem. Soc., 125 (1978) 869–875.
  10. D.D. Caudle, J.H. Tucker, J.L. Cooper, B.B. Arnold, A. Papastamataki, Electrochemical demineralization of water with carbon electrodes, Washington: U.S. Dept. of the Interior 1966.
  11. S. Panwichian, D. Kantachote, B. Wittayaweerasak, Isolation of purple nonsulfur bacteria for the removal of heavy metals and sodium from contaminated shrimp ponds, Electron. J. Biotech., 13 (2010) 3–4.
  12. H.W. Yen, I.C. Hu, C.Y. Chen, S.H. Ho, D.J. Lee, J.S. Chang, Microalgae-based biorefinery–from biofuels to natural products, Biores. Technol., 135 (2013) 166–174.
  13. K. Minas, E. Karunakaran, T. Bond, C. Gandy, A. Honsbein, M. Madsen, J. Amezagad, A. Amtmanne, M.R. Templetonc, C.A. Biggs, L. Lawton, Biodesalination: an emerging technology for targeted removal of Na+ and Cl− from seawater by cyanobacteria, Desal. Water Treat., 55 (2015) 2647–2668.
  14. B. Kokabian, V.G. Gude, Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production, Environ. Sci.: Processes Impacts, 15 (2013) 2178–2185.
  15. Z.L. Yao, C.Q. Ying, J.X. Lu, Q.F. Lai, K. Zhou, H. Wang, L. Chen, Removal of K+, Na+, Ca2+, and Mg2+ from saline-alkaline water using the microalga Scenedesmus obliquus, Chin. J. Oceanol. Limnol., 31 (2013) 1248–1256.
  16. X. Gan, G. Shen, B. Xin, M. Li. Simultaneous biological desalination and lipid production by Scenedesmus obliquus cultured with brackish water, Desalination, 400 (2016) 1–6.
  17. S. Ruangsomboon, M. Ganmanee, S. Choochote, Effects of different nitrogen, phosphorus, and iron concentrations and salinity on lipid production in newly isolated strain of the tropical green microalga, J. Appl. Phycol., 25 (2013) 867–874.
  18. I. Pancha, K. Chokshi, R. Maurya, K. Trivedi, S.K. Patidar, A. Ghosh, S. Mishra, Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077, Biores. Technol., 189 (2015) 341–348.
  19. C. Yeesang, B. Cheirsilp, Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand, Biores. Technol., 102 (2011) 3034–3040.
  20. L. Xin, H. Hong-ying, G. Ke, Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp, Biores. Technol., 101 (2010) 5494–5500.
  21. S. Mandal, N. Mallick, Microalga Scenedesmus obliquus as a potential source for biodiesel production, Appl. Microbiol. Biot., 84 (2009) 281–291.
  22. N.L.S. Hakalin, A.P. Paz, D.A.G Aranda, Enhancement of cell growth and lipid content of a freshwater microalga Scenedesmus sp. by optimizing nitrogen, phosphorus and vitamin concentrations for biodiesel production, Natural Sci., 6 (2014) 1044–1054.
  23. R. Rippka, J. Deruelles, J.B. Waterbury, M. Herdman, R.Y. Stanier, Generic assignments, strain histories and properties of pure cultures of cyanobacteria, Microbiology, 111 (1979) 1–61.
  24. J. Ebina, T. Tsutsui, T. Shirai, Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation, Water Res., 17 (1983) 1721–1726.
  25. E.G. Bligh, W.J. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37 (1959) 911–917.
  26. J. Rodríguez-Ruiz, E.H. Belarbi, J.L.G. Sánchez, Rapid simultaneous lipid extraction and transesterification for fatty acid analyses, Biotechnol. Tech., 12 (1998) 689–691.
  27. G. Mujtaba, W. Choi, C.G. Lee, K. Lee, Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions, Biores. Technol., 123 (2012) 279–283.
  28. Q. Lin, J. Lin, Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga, Biores. Technol., 102 (2011) 1615–1621.
  29. M. Li, L. Gao, L. Lin, Specific growth rate, colonial morphology and extracellular polysaccharides (EPS) content of Scenedesmus obliquus grown under different levels of light limitation, Ann. Limnol. - Int. J. Lim., 51 (2015) 329–334.
  30. S. Pradhan, S. Singh, L.C. Rai, Characterization of various functional groups present in the capsule of microcystis and study of their role in biosorption of Fe, Ni and Cr, Biores. Technol., 98 (2007) 595–601.
  31. V.K. Gupta, A. Rastogi, Biosorption of lead (II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—a comparative study, Colloids Surf. B: Biointerfaces, 64 (2008) 170–178.
  32. Q. Hu, M. Sommerfeld, E. Jarvis, Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances, Plant J., 54 (2008) 621–639.
  33. N.O. Zhila, G.S. Kalacheva, T.G. Volova, Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252, J. Appl. Phycol., 23 (2011) 47–52.
  34. E.S. Salama, H.C. Kim, R.A. Abou-Shanab, M.K. Ji, Y.K. Oh, S.H. Kim, B.H. Jeon, Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress, Bioprocess Biosyst. Eng., 36 (2013) 827–833.
  35. M. Siaut, S. Cuiné, C. Cagnon, Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves, BMC Biotechnol., 11 (2011) 7.
  36. M. EI-Sheekh, A.E.F. Abomohra, D. Hanelt, Optimization of biomass and fatty acid productivity of Scenedesmus obliquus as a promising microalga for biodiesel production, World J. Microbiol. Biotechnol., 29 (2013) 915–922.
  37. L. Pirastru, F. Perreault, F.L. Chu, A. Ockarroum, L. Sleno, R. Popovic, D. Dewez, Longterm stress induced by nitrate deficiency, sodium chloride, and high light on photosystem II activity and carotenogenesis of green alga Scenedesmus sp, Botany, 90 (2012) 1007–1014.
  38. S.H. Ho, C.Y. Chen, J.S. Chang, Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N, Biores. Technol., 113 (2012) 244–252.
  39. G. Ahlgren, P. Hyenstrand, Nitrogen limitation effects of different nitrogen sources on nutritional quality of two freshwater organisms, Scenedesmus quadricauda (Chlorophyceae) and Synechococcus sp. (Cyanophyceae), J. Phycol., 39 (2003) 906–917.
  40. A. Banerjee, R. Sharma, Y. Chisti, Botryococcus braunii: a renewable source of hydrocarbons and other chemicals, Crit. Rev. Biotechnol., 22 (2002) 245–279.
  41. C. Dayananda, R. Sarada, V. Kumar, Isolation and characterization of hydrocarbon producing green alga Botryococcus braunii from Indian freshwater bodies, Electron. J. Biotechn., 10 (2007) 78–91.
  42. A. Converti, A.A. Casazza, E.Y. Ortiz, P. Perego, M. Del Borghi, Effect of temperature and nitrogen concentration on the growthand lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production, Chem. Eng. Process., 48 (2009) 1146–1151.
  43. G. Knothe, “Designer” biodiesel: optimizing fatty estercomposition to improve fuel properties, Energy Fuel, 22 (2008) 1358–1364.
  44. E. Francisco, D. Neves, E. Lopes, T. Franco, Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality, J. Chem. Technol. Biotechnol., 85 (2009) 395–403.
  45. G. Knothe, Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters, Fuel Process. Technol., 86 (2005) 1059–1070.
  46. S.H. Ho, W.M. Chen, J.S. Chang, Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production, Biores. Technol., 101 (2010) 8725–8730.
  47. M.Y. Roleda, S.P. Slocombe, R.J.G. Leakey, Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy, Biores. Technol., 129 (2013) 439–449.