1. D. Briggs, Environmental pollution and the global burden of disease, British Med. Bull., 68 (2003) 1–24.
  2. Z. Cheng, F. Fu, D.D. Dionysiou, B. Tang, Adsorption, oxidation, and reduction behavior of arsenic in the removal of aqueous As (III) by mesoporous Fe/Al bimetallic particles, Water Res., 96 (2016) 22–31.
  3. D.Q. Hung, O. Nekrassova, R.G. Compton, Analytical methods for inorganic arsenic in water: a review, Talanta, 64 (2004) 269–277.
  4. V.K. Sharma, M. Sohn, Aquatic arsenic: toxicity, speciation, transformations, and remediation, Environ. Int., 35 (2009) 743– 759.
  5. G. Liu, X. Zhang, J.W. Talley, C.R. Neal, H. Wang, Effect of NOM on arsenic adsorption by TiO2 in simulated As (III)-contaminated raw waters, Water Res., 42 (2008) 2309–2319.
  6. B. An, Q. Liang, D. Zhao, Removal of arsenic (V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles, Water Res., 45 (2011) 1961–1972.
  7. S. Tresintsi, K. Simeonidis, G. Vourlias, G. Stavropoulos, M. Mitrakas, Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: Study of Fe (II) oxidation– precipitation parameters, Water Res., 46 (2012) 5255– 5267.
  8. M.B. Baskan, A. Pala, A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate, Desalination, 254 (2010) 42–48.
  9. J. Pattanayak, K. Mondal, S. Mathew, S. Lalvani, A parametric evaluation of the removal of As (V) and As (III) by carbon- based adsorbents, Carbon, 38 (2000) 589–596.
  10. E. Lourie, E. Gjengedal, Metal sorption by peat and algae treated peat: Kinetics and factors affecting the process, Chemosphere, 85 (2011) 759–764.
  11. J.U.K. Oubagaranadin, Z. Murthy, Isotherm modeling and batch adsorber design for the adsorption of Cu (II) on a clay containing montmorillonite, Appl. Clay Sci., 50 (2010) 409–413.
  12. J.P. Chen, S. Wu, Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties, Langmuir, 20 (2004) 2233–2242.
  13. V. Gupta, A. Rastogi, V. Saini, N. Jain, Biosorption of copper (II) from aqueous solutions by Spirogyra species, J. Colloid Interface Sci., 296 (2006) 59–63.
  14. G.P. Rao, C. Lu, F. Su, Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review, Separ. Purif. Technol., 58 (2007) 224–231.
  15. M.A. Atieh, O.Y. Bakather, B. Al-Tawbini, A.A. Bukhari, F.A. Abuilaiwi, M.B. Fettouhi, Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water, Bioinorg. Chem. Applic., 2010 (2011).
  16. I. Ali, New generation adsorbents for water treatment, Chem. Rev., 112 (2012) 5073–5091.
  17. A. Abbas, A.M. Al-Amer, T. Laoui, M.J. Al-Marri, M.S. Nasser, M. Khraisheh, M.A. Atieh, Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications, Separ. Purif. Technol., 157 (2016) 141–161.
  18. R.K. Ibrahim, M. Hayyan, M.A. AlSaadi, A. Hayyan, S. Ibrahim, Environmental application of nanotechnology: air, soil, and water, Environ. Sci. Pollut. Res., 23 (2016) 13754–13788.
  19. E.T. Thostenson, Z. Ren, T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Comp. Sci. Technol., 61 (2001) 1899–1912.
  20. M. Martinez, M. Callejas, A. Benito, M. Cochet, T. Seeger, A. Anson, J. Schreiber, C. Gordon, C. Marhic, O. Chauvet, Modifications of single-wall carbon nanotubes upon oxidative purification treatments, Nanotechnology, 14 (2003) 691.
  21. M. Hayyan, A. Abo-Hamad, M.A. AlSaadi, M.A. Hashim, Functionalization of graphene using deep eutectic solvents, Nanoscale Res. Lett., 10 (2015) 324.
  22. A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures, Chem. Commun., (2003) 70–71.
  23. A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed, Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids, J. Amer. Chem. Soc., 126 (2004) 9142–9147.
  24. J.T. Gorke, F. Srienc, R.J. Kazlauskas, Hydrolase-catalyzed biotransformations in deep eutectic solvents, Chem. Commun., (2008) 1235–1237.
  25. E. Leroy, P. Decaen, P. Jacquet, G. Coativy, B. Pontoire, A.-L. Reguerre, D. Lourdin, Deep eutectic solvents as functional additives for starch based plastics, Green Chem., 14 (2012) 3063–3066.
  26. E.R. Cooper, C.D. Andrews, P.S. Wheatley, P.B. Webb, P. Wormald, R.E. Morris, Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues, Nature, 430 (2004) 1012–1016.
  27. A.P. Abbott, J. Griffith, S. Nandhra, C. O’Connor, S. Postlethwaite, K.S. Ryder, E.L. Smith, Sustained electroless deposition of metallic silver from a choline chloride-based ionic liquid, Surf. Coat. Technol., 202 (2008) 2033–2039.
  28. A.P. Abbott, G. Capper, K.J. McKenzie, K.S. Ryder, Electrodeposition of zinc–tin alloys from deep eutectic solvents based on choline chloride, J. Electroanal. Chem., 599 (2007) 288–294.
  29. A. Abo-Hamad, M. Hayyan, M.A. AlSaadi, M.A. Hashim, Potential applications of deep eutectic solvents in nanotechnology, Chem. Eng. J., 273 (2015) 551–567.
  30. A. Giri, R. Patel, S. Mahapatra, Artificial neural network (ANN) approach for modelling of arsenic (III) biosorption from aqueous solution by living cells of Bacillus cereus biomass, Chem. Eng. J., 178 (2011) 15–25.
  31. K.H. Cho, S. Sthiannopkao, Y.A. Pachepsky, K.-W. Kim, J.H. Kim, Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network, Water Res., 45 (2011) 5535–5544.
  32. M. Podder, C. Majumder, The use of artificial neural network for modelling of phycoremediation of toxic elements As (III) and As (V) from wastewater using Botryococcus braunii, Spectrochim. Acta Part A: Molec. Biomol. Spectrosc., 155 (2016) 130–145.
  33. M.K. AlOmar, M. Hayyan, M.A. Alsaadi, S. Akib, A. Hayyan, M.A. Hashim, Glycerol-based deep eutectic solvents: Physical properties, J. Mol. Liq., 215 (2016) 98–103.
  34. M.A. AlSaadi, A. Al Mamun, M.Z. Alam, M.K. Amosa, M.A. Atieh, Removal of cadmium from water by CNT–PAC composite: effect of functionalization, Nano, 11 (2016) 1650011.
  35. D.P. Strik, A.M. Domnanovich, L. Zani, R. Braun, P. Holubar, Prediction of trace compounds in biogas from anaerobic digestion using the MATLAB Neural Network Toolbox, Environ. Model. Software, 20 (2005) 803–810.
  36. T.J. Aitchison, M. Ginic-Markovic, J.G. Matisons, G.P. Simon, P.M. Fredericks, Purification, cutting, and sidewall functionalization of multiwalled carbon nanotubes using potassium permanganate solutions, J. Phys. Chem. C, 111 (2007) 2440–2446.
  37. M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M.A. Hashim, Functionalization of CNTs surface with phosphonuim based deep eutectic solvents for arsenic removal from water, Appl. Surf. Sci., 389 (2016) 216–226.
  38. B. Das, N. Mondal, R. Bhaumik, P. Roy, Insight into adsorption equilibrium, kinetics and thermodynamics of lead onto alluvial soil, Int. J. Environ. Sci. Technol., 11 (2014) 1101–1114.
  39. M.S. Kumar, B. Phanikumar, Response surface modelling of Cr6+ adsorption from aqueous solution by neem bark powder: Box–Behnken experimental approach, Environ. Sci. Pollut. Res., 20 (2013) 1327–1343.
  40. A. Banerjee, P. Sarkar, S. Banerjee, Application of statistical design of experiments for optimization of As (V) biosorption by immobilized bacterial biomass, Ecol. Eng., 86 (2016) 13–23.
  41. S. Ayoob, A. Gupta, P. Bhakat, Performance evaluation of modified calcined bauxite in the sorptive removal of arsenic (III) from aqueous environment, Colloids Surf. A: Physicochem. Eng. Asp., 293 (2007) 247–254.