1. N.A. Oladoja, Advances in the quest for substitute for synthetic organic polyelectrolytes as coagulant aid in water and wastewater treatment operations, Sustain. Chem. Pharm., 3 (2016) 47–58.
  2. D. Li, X. Li, H. Zhang, F. Li, S. Qian, S.W. Joo, Efficient heat transfer enhancement by elastic turbulence with polymer solution in a curved microchannel, Microfluid. Nanofluid., 21 (2017) 10.
  3. G. Sen, S. Mishra, K. Prasad Dey, S. Bharti, Synthesis, characterization and application of novel polyacrylamide-grafted barley, J. Appl. Polym. Sci., 131 (2014).
  4. D. Zhao, H. Liu, W. Guo, L. Qu, C. Li, Effect of inorganic cations on the rheological properties of polyacrylamide/xanthan gum solution, J. Nat. Gas. Sci. Eng., 31 (2016) 283–292.
  5. V.H. Dao, N.R. Cameron, K. Saito, Synthesis, properties and performance of organic polymers employed in flocculation applications, Polym. Chem-UK, 7 (2016) 11–25.
  6. J. Wang, S. Yuan, Y. Wang, H. Yu, Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties, Water Res., 47 (2013) 2643–2648.
  7. W. Rudolfs, H.W. Gehm, Chemical coagulation of sewage. VI. Clarifying value of return sludge, Sewage Works J., 9 (1937) 22–33.
  8. R.A. Stevenson, P.J. Beard, H.O. Banks, Chemical sewage purification at Palo Alto. Regeneration of spent coagulant effects complete sewage treatment, Sewage Works J., 5 (1933) 53–60.
  9. L.H. Enslow, Chemical precipiation processes, Civil Eng., 5 (1933) 234–239.
  10. K. Loganathan, P. Chelme-Ayala, M. Gamal El-Din, Effects of different pretreatments on the performance of ceramic ultrafiltration membrane during the treatment of oil sands tailings pond recycle water: A pilot-scale study, J. Environ. Manage., 151 (2015) 540–549.
  11. L.L. Miao, M.W. Zhu, J.X. Duan, Q.L. Zhu, H.Y. Sun, Efficient sedimentation/MBBR/filter for treatment of metallurgical comprehensive wastewater, China Water Wastewater, 28 (2012) 47–50.
  12. D.G. Stevenson, A review of current and developing potable water treatment processes, Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng., 217 (2003) 11–23.
  13. W. Wei, X. Li, J. Zhu, M. Du, Characteristics of flocs formed by polyaluminum chloride during flocculation after floc recycling and breakage, Desal. Water Treat., 56 (2015) 1110–1120.
  14. L. Sun, M. Lv, Y. Yang, J. Lin, L. Zhou, G. Li, Enhanced treatment of water with low turbidity: Combined effects of permanganate, PAM and recycled sludge, J. Harbin Inst. Technol. (New Ser.), 6 (2009) 25.
  15. S. Liu, T. Liang, Return sludge employed in enhancement of color removal in the integrally industrial wastewater treatment plant, Water Res., 38 (2004) 103–110.
  16. B. Wang, Z. Chen, J. Zhu, J. Shen, Y. Han, Pilot-scale fluoride-containing wastewater treatment by the ballasted flocculation process, Water Sci. Technol., 68 (2013) 134–143.
  17. Z. Zhou, Y. Yang, X. Li, W. Gao, Coagulation performance and flocs characteristics of variable sludge recycling designs for the synthetic low-turbidity water treatment, Desal. Water Treat., 52 (2014) 4705–4714.
  18. Z. Zhou, Y. Yang, X. Li, W. Gao, H. Liang, G. Li, Coagulation efficiency and flocs characteristics of recycling sludge during treatment of low temperature and micro-polluted water, J. Environ. Sci. (China), 24 (2012) 1014–1020.
  19. S.J. Jiang, X.Y. Long, Y. Zhang, P.F. Wang, Pilot study of yangtze river water treatment in the winter by sludge return, Appl. Mech. Mater., 209–211 (2012) 1915–1922.
  20. Y. Xu, B. Cui, R. Ran, Y. Liu, H. Chen, G. Kai, J. Shi, Risk assessment, formation, and mitigation of dietary acrylamide: Current status and future prospects, Food Chem. Toxicol., 69 (2014) 1–12.
  21. A. Guezennec, C. Michel, K. Bru, S. Touzé, N. Desroche, I. Mnif, M. Motelica-Heino, Transfer and degradation of polyacrylamide-based flocculants in hydrosystems: a review, Environ. Sci. Pollut. R., 22 (2015) 6390–6406.
  22. P. Erkekoglu, T. Baydar, Acrylamide neurotoxicity, Nutr Neurosci, 17 (2014) 49–57.
  23. Z. Wang, J. Nan, M. Yao, Y. Yang, X. Zhang, Insight into the combined coagulation-ultrafiltration process: The role of Al species of polyaluminum chlorides, J. Membr. Sci., 529 (2017) 80–86.
  24. M.A. Yukselen, J. Gregory, The reversibility of floc breakage, Int J. Miner. Process., 73 (2004) 251–259.
  25. P. Jarvis, B. Jefferson, J. Gregory, S.A. Parsons, A review of floc strength and breakage, Water Res., 39 (2005) 3121–3137.
  26. J. Sun, L. Qin, G. Li, Y. Kang, Effect of hydraulic conditions on flocculation performances and floc characteristics in Chinese herbal extracts by chitosan and chitosan hydrochloride, Chem. Eng. J., 225 (2013) 641–649.
  27. P. Bubakova, M. Pivokonsky, P. Filip, Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state, Powder Technol., 235 (2013) 540–549.
  28. W. He, J. Nan, H. Li, S. Li, Characteristic analysis on temporal evolution of floc size and structure in low-shear flow, Water Res., 46 (2012) 509–520.
  29. M. Soos, A.S. Moussa, L. Ehrl, J. Sefcik, H. Wu, M. Morbidelli, Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank, J. Colloid. Interf. Sci., 319 (2008) 577–589.
  30. C. Ye, D. Wang, B. Shi, J. Yu, J. Qu, M. Edwards, H. Tang, Alkalinity effect of coagulation with polyaluminum chlorides: Role of electrostatic patch, Colloids Surf. A: Physicochem. Eng. Asp., 294 (2007) 163–173.
  31. X. Wu, X. Ge, D. Wang, H. Tang, Distinct coagulation mechanism and model between alum and high Al 13-PACl, Colloids Surf. A: Physicochem. Eng. Asp., 305 (2007) 89–96.