References

  1. Y. Wang, Y. Li, G. Liu, D. Wang, G. Jiang, Y. Cai, Elemental mercury in natural waters: occurrence and determination of particulate Hg(0), Environ. Sci. Technol., 49 (2015) 9742–9749.
  2. K. Leopold, M. Foulkes, P. Worsfold, Methods for the determination and speciation of mercury in natural waters—a review, Anal. Chim. Acta, 663 (2010) 127–138.
  3. L. Ling, Y. Zhao, J. Du, D. Xiao, An optical sensor for mercuric ion based on immobilization of Rhodamine B derivative in PVC membrane, Talanta, 91 (2012) 65–71.
  4. Y. Yu, L.R. Lin, K.B. Yang, X. Zhong, R.B. Huang, L.S. Zheng, p-Dimethylaminobenzaldehyde thiosemicarbazone: a simple novel selective and sensitive fluorescent sensor for mercury(II) in aqueous solution, Talanta, 69 (2006) 103–106.
  5. J. Chamier, J. Leaner, A.M. Crouch, Photoelectrochemical determination of inorganic mercury in aqueous solutions, Anal. Chim. Acta, 661 (2010) 91–96.
  6. F. Yan, D. Kong, Y. Luo, Q. Ye, J. He, X. Guo, L. Chen, Carbon dots serve as an effective probe for the quantitative determination and for intracellular imaging of mercury(II), Microchim. Acta, 183 (2016) 1611–1618.
  7. Q. Ye, F. Yan, Y. Luo, Y. Wang, X. Zhou, L. Chen, Formation of N, S-codoped fluorescent carbon dots from biomass and their application for the selective detection of mercury and iron ion, Spectrochim. Acta A, 173 (2017) 854–862.
  8. N. Horzum, D. Mete, E. Karakuş, M. Üçüncü, M. Emrullahoğlu, M.M. Demir, ChemistrySelect, 1 (2016) 896–900.
  9. J. Zhang, Y. Zhou, W. Hu, L. Zhang, Q. Huang, T. Ma, Highly selective fluorescence enhancement chemosensor for Hg2+ based on rhodamine and its application in living cells and aqueous media, Sens. Actuators B, 183 (2013) 290–296.
  10. H. Xu, K. Zhang, Q. Liu, Y. Liu, M. Xie, Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots, Microchim. Acta, 184 (2017) 1199–1206.
  11. R. Zhang, F. Yan, Y. Huang, D. Kong, Q. Ye, J. Xu, L. Chen, Rhodamine-based ratiometric fluorescent probes based on excitation energy transfer mechanisms: construction and applications in ratiometric sensing, RSC Adv., 56 (2016) 50732–50760.
  12. J. Kuchlyan, S. Basak, D. Dutta, A.K. Das, D. Mal, N. Sarkar, A new rhodamine derived fluorescent sensor: detection of Hg2+ at cellular level, Chem. Phys. Lett., 673 (2017) 84–88.
  13. S. Rouhani, S. Haghgoo, A novel fluorescence nanosensor based on 1,8-naphthalimide-thiophene doped silica nanoparticles, and its application to the determination of methamphetamine, Sens. Actuators B, 209 (2015) 957–965.
  14. S. Rouhani, F. Nahavandifard, Molecular imprinting-based fluorescent optosensor using a polymerizable 1,8-naphthalimide dye as a florescence functional monomer, Sens. Actuators B, 197 (2014) 185–192.
  15. P. Alaei, S. Rouhani, K. Gharanjig, A dual colorimetric and fluorometric anion sensor based on polymerizable 1, 8-naphthalimide dye, Prog. Color Colorants Coat., 6 (2013) 87–96.
  16. S. Rouhani, S. Salimi, K. Haghbeen, Development of optical pH sensors based on derivatives of hydroxyazobenzene, and the extended linear dynamic range using mixture of dyes, Dyes Pigm., 77 (2008) 363–368.
  17. B.N. Ahamed, P. Ghosh, An integrated system of pyrene and rhodamine-6G for selective colorimetric and fluorometric sensing of mercury(II), Inorg. Chim. Acta, 372 (2011) 100–107.
  18. L. Tang, F. Li, M. Liu, R. Nandhakumar, Single sensor for two metal ions: colorimetric recognition of Cu2+ and fluorescent recognition of Hg2+, Spectrochim. Acta A, 78 (2011) 1168–1172.
  19. J. Zhang, L. Zhang, Y. Zhou, T. Ma, J. Niu, A highly selective fluorescent probe for the detection of palladium(II) ion in cells and aqueous media, Microchim. Acta, 180 (2013) 211–217.