1. G. Pfaff, Synthesis of calcium titanate powders by the sol-gel process, Chem. Mater., 6 (1994) 58–620.
  2. Q. Ma, K. Mimura, K. Kato, Tuning shape of barium titanate nanocubes by combination of oleic acid/tert-butylamine through hydrothermal process, J. Alloy. Compd., 655 (2016) 71–78.
  3. B.A. Hernandez-Sanchez, T.J. Boyle, C.M. Baros, L.N. Brewer, T.J. Headley, D.R. Tallant, M.A. Rodriguez, B.A. Tuttle, Alkaline earth titanate (AETiO3) perovskite nanoparticles synthesized from structurally characterized single-source alkoxides, Chem. Mater., 19 (2007) 1459–1471.
  4. R. Niishiro, S. Tanaka, A. Kudo, Hydrothermal-synthesized SrTiO3 photocatalyst codoped with rhodium and antimony with visible-light response for sacrificial H2 and O2 evolution and application to overall water splitting, Appl. Catal. B Environ., 150–151 (2014) 187–196.
  5. T.K. Townsend, N.D. Browning, F.E. Osterloh, Nanoscale strontium titanate photocatalysts for overall water splitting, ACS Nano, 6 (2012) 7420–7426.
  6. T. Alammar, I. Hamm, M. Wark, A.V. Mudring, Low-temperature route to metal titanate perovskite nanoparticles for photocatalytic applications, Appl. Catal. B Environ., 178 (2015) 20–28.
  7. B. Lertpanyapornchai, T. Yokoi, C. Ngamcharussrivichai, Citric acid as complexing agent in synthesis of mesoporous strontium titanate via neutral-templated self-assembly sol-gel combustion method, Micropor. Mesopor. Mater., 226 (2016) 505–509.
  8. S. Otsuka-Yao-Matsuo, T. Omata, S. Ueno, M. Kita, Photobleaching of methylene blue aqueous solution sensitized by composite powders of titanium oxide with SrTiO3, BaTiO3, and CaTiO3, Mater. Trans., 44 (2003) 2124–2129.
  9. M. Bradha, T. Vijayaraghavan, S.P. Suriyaraj, R. Selvakumar, A.M. Ashok, Synthesis of photocatalytic La(1–x)AxTiO3.5–δ (A=Ba, Sr, Ca) nano perovskites and their application for photocatalytic oxidation of Congo red dye in aqueous solution, J. Rare Earth., 33 (2015) 160–167.
  10. L.R. Prado, N.S. de Resende, R.S. Silva, S.M.S. Egues, G.R. Salazar- Banda, Influence of the synthesis method on the preparation of barium titanate nanoparticles, Chem. Eng. Process. Proc. Intens., 103 (2016) 12–20.
  11. G. Pfaff, Sol–gel synthesis of strontium titanate powders of various compositions, J. Mater. Chem., 3 (1993) 721–724.
  12. G. Pfaff, Sol–gel synthesis of barium titanate powders of various compositions, J. Mater. Chem., 2 (1992) 591–594.
  13. C. Lemoine, B. Gilbert, B. Michaux, J.P. Pirard, A.J. Lecloux, Synthesis of barium titanate by the sol-gel process, J. Non Cryst. Solids, 175 (1994) 1–13.
  14. Y. Yang, Y. Sun, Y. Jiang, Structure and photocatalytic property of perovskite and perovskite-related compounds, Mater. Chem. Phys., 96 (2006) 234–239.
  15. K.K. Saha, T. Saha-Dasgupta, A. Mookerjee, S. Saha, T.P. Sinha, Optical properties of perovskite alkaline earth titanates: a formulation, J. Phys. Condens. Mat., 14 (2002) 3849– 3863.
  16. F.M.F. de Groot, M. Grioni, J.C. Fuggle, J. Ghijsen, G.A. Sawatzky, H. Petersen, Oxygen 1s X-ray-absorption edges of transition-metal oxides, Phys. Rev. B, 40 (1989) 5715–5723.
  17. V.M. Goldschmidt, Krystallbau und chemische Zusammensetzung, Ber. Dtsch. Chem. Ges., 60 (1927) 1263–1268.
  18. W. Wang, M.O. Tadé, Z. Shao, Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment, Chem. Soc. Rev., 44 (2015) 5371–5408.
  19. C. Li, X.G. Lu, W.Z. Ding, L.M. Feng, Y.H. Gao, Z.M. Guo, Acta Crystallogr. B Struct. Sci., 64 (2008) 702–707.
  20. V. Ciupina, I. Carazeanu, E. Chirila, G. Prodan, TEM study of CaTiO3 synthesized by sol-gel method, Proceedings “SPIE”, 5581, 345–349.
  21. I. Carazeanu, E. Chirila, V. Ciupina, G. Prodan, Transmission electron microscopy study of the synthesized SrTiO3 by sol-gel method, Proceedings “4AACD”, 176–178, 2004.
  22. I. Popovici, E. Chirila, Preparation of BaTiO3 ceramic powders via sol-gel method, Ovidius University Annals of Chemistry, 15 (2004) 9–12.
  23. A. Dumbrava, G. Prodan, D. Berger, M. Bica, Properties of PEG-capped CdS nanopowders synthesized under very mild conditions, Powder Technol., 270 (2015) 197–204.
  24. N. Soltani, E. Saion, W.M.M. Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M.R. Zare, E. Gharibshahi, Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles, Sol. Energy, 97 (2013) 147–154.
  25. C.E. Housecroft, A.G. Sharpe, Inorganic Chemistry, Second edition, Pearson Education Limited 2005.
  26. H. Zhao, Y. Duan, X. Sun, Synthesis and characterization of CaTiO3 particles with controlled shape and size, New J. Chem., 37 (2013) 986–991.
  27. H. Lin, C.P. Huang, W. Li, C. Ni, S.I. Shah, Y.H. Tseng, Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol, Appl. Catal. B Environ., 68 (2006) 1–11.
  28. R. Comes, P.V. Sushko, S.M. Heald, R.J. Colby, M.E. Bowden, S.A. Chambers. Band gap reduction and dopant interaction in epitaxial La, Cr, Co-doped SrTiO3 thin films, Chem. Mater., 26 (2014) 7073–7082.
  29. M. Landmann, E. Rauls, W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, J. Phys. Condens. Matter, 24 (2012) 195503 (6 pp). Doi:10.1088/0953-8984/24/19/195503.
  30. Y. Li, X.P. Gao, G.R. Li, G.L. Pan, T.L. Yan, H.Y. Zhu, Titanate nanofiber reactivity: Fabrication of MTiO3 (M = Ca, Sr, and Ba) perovskite oxides, J. Phys. Chem. C, 113 (2009) 4386–4394.
  31. P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, F.A. Armstrong, Shriver and Atkins’ Inorganic Chemistry, 5th ed., Oxford University Press, 2010
  32. M. Sato, T. Tanji, H. Hara, T. Nishide, Y. Sakashita, SrTiO3 film fabrication and powder synthesis from a non-polymerized precursor system of a stable Ti(IV) complex and Sr(II) salt of EDTA, J. Mater. Chem., 9 (1999) 1539–1542.
  33. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi B, 15 (1966) 627–637.
  34. S.T. Murphy, N.D.M. Hine, Point defects and non-stoichiometry in Li2TiO3, Chem. Mater., 26 (2014) 1629−1638.
  35. A.K. Ray, A.A.C.M. Beenackers, Development of a new photocatalytic reactor for water purification, Catal. Today, 40 (1998) 73.
  36. C. Duque, A. Stashans, Oxygen-vacancy defects on BaTiO3 (001) surface: a quantum chemical study, Physica B Condens. Matter, 336 (2003) 227.
  37. W.M. Hou, Y. Ku, Synthesis and characterization of La2Ti2O7 employed for photocatalytic degradation of reactive red 22 dyestuff in aqueous solution, J. Alloys Compd., 509 (2011) 5913.
  38. W.W. Lee, W.H. Chung, W.S. Huang, W.C. Lin, W.Y. Lin, Y.R. Jiang, C.C. Chen, Photocatalytic activity and mechanism of nano-cubic barium titanate prepared by a hydrothermal method, J. Taiwan Inst. Chem. Eng., 44 (2013) 660–669.
  39. A. Dumbrava, D. Berger, G. Prodan, C. Matei, F. Moscalu, A. Diacon, The influence of Triton X-100 surfactant on the morphology and properties of zinc sulfide nanoparticles for applications in azo dyes degradation, Mater. Chem. Phys., 193 (2017) 316–328.
  40. A. Dumbrava, D. Berger, G. Prodan, F. Moscalu, A. Diacon, Facile synthesis, characterization and application of functionalized cadmium sulfide nanopowders, Mater. Chem. Phys., 173 (2016) 70–77.
  41. B. Liu, X. Zhao, C. Terashima, A. Fujishima, K. Nakata, Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems, Phys. Chem. Chem. Phys., 16 (2014) 8751.
  42. A. Dumbrava, D. Berger, G. Prodan, F. Moscalu, A. Diacon, Considerations about the dependence of PEGylated ZnS nanoparticles properties on the synthesis method, Z. Phys. Chem., 2017, in press. Doi: 10.1515/zpch-2017-0005.
  43. S. Dafare, P.S. Deshpande, R.S. Bhavsar, Photocatalytic degradation of Congo red dye on combustion synthesized Fe2O3, Indian J. Chem. Technol., 20 (2013) 406–410.
  44. M. Ișik, D.T. Sponza, Effect of oxygen on decolorization of azo dyes by Escherichia coli and Pseudomonas sp. and fate of aromatic amines, Process Biochem., 38 (2003) 1183–1192.
  45. K. Tanaka, K. Padermpole, T. Hisanaga, Photocatalytic degradation of commercial azo dyes, Wat. Res., 34 (2000) 327–333.
  46. S. Kakarndee, S. Juabrum, S. Nanan, Low temperature synthesis, characterization and photoluminescence study of platelike ZnS, Mater. Lett., 164 (2016) 198–201.
  47. D. Wojcieszak, D. Kaczmarek, J. Domaradzki, M. Mazur, Correlation of photocatalysis and photoluminescence effect in relation to the surface properties of TiO2:Tb thin films, Int. J. Photoenergy, 2013 (2013) 526140 (9 pp).
  48. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Sol. Energy Mat. Sol. Cell., 90 (2006) 1773–1787.
  49. S. Azizian, Kinetic models of sorption: a theoretical analysis, J. Colloid Interf. Sci., 276 (2004) 47–52.
  50. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. A review, Appl. Catal. B Environ., 49 (2004) 1–14.
  51. I.K. Konstantinou, T.A. Albanis, Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways, Appl. Catal. B Environ., 42 (2003) 319–335.