References

  1. S. Malato, P. Fernández-Ibáñez, M. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today, 147 (2009) 1–59.
  2. A.D. Levine, T. Asano, Peer reviewed: recovering sustainable water from wastewater, Environ. Sci. Technol., 38 (2004) 201A–208A.
  3. V.K. Moghaddam, F. Changani, A. Mohammadi, M. Hadei, R. Ashabi, L.E. Majd, A.H. Mahvi, Sustainable development of water resources based on wastewater reuse and upgrading of treatment plants: a review in the Middle East, Desal. Wat. Treat., 65 (2017) 463–473.
  4. A. Ebrahimi, M.M. Amin, H. Pourzamani, Y. Hajizadeh, A.H. Mahvi, M. Mahdavi, M.H.R. Rad, Hybrid coagulation-UF processes for spent filter backwash water treatment: a comparison studies for PAFCl and FeCl3 as a pre-treatment, Environ. Monit. Assess., 189 (2017) 387.
  5. M. Mahdavi, M.M. Amin, A.H. Mahvi, H. Pourzamani, A. Ebrahimi, Metals, heavy metals and microorganism removal from spent filter backwash water by hybrid coagulation-UF processes, J. Water Reuse Desal., 7 (2017) doi:jwrd2017148 (in press).
  6. S. Toze, PCR and the detection of microbial pathogens in water and wastewater, Water Res., 33 (1999) 3545–3556.
  7. O.K. Dalrymple, E. Stefanakos, M.A. Trotz, D.Y. Goswami, A review of the mechanisms and modeling of photocatalytic disinfection, Appl. Catal., B, 98 (2010) 27–38.
  8. R.N. Kinman, G. Rempel, Water and wastewater disinfection with ozone: a critical review, Crit. Rev. Env. Sci. Technol., 5 (1975) 141–152.
  9. M.D. Sobsey, M.J. Casteel, H. Chung, G. Lovelace, O.D. Simmons III, J. Meschke, Innovative Technologies for Waste Water Disinfection and Pathogen Detection, Proceedings of the Water Environment Federation Wastewater Disinfection Conference, Water Environment Federation, Baltimore, MD, 1998.
  10. C.R. Kanna, Inactivation of Viruses in Water by Chlorination Using Bacteriophages as Model Organisms, 2016.
  11. S.A. Jassim, R.G. Limoges, H. El-Cheikh, Bacteriophage biocontrol in wastewater treatment, World J. Microbiol. Biotechnol., 32:70 (2016) 1–10.
  12. K. Ellis, Water disinfection: a review with some consideration of the requirements of the third world, Crit. Rev. Env. Sci. Technol., 20 (1991) 341–407.
  13. S. Ahiwale, P. Koparde, P. Deore, V. Gunale, B.P. Kapadnis, Bacteriophage Based Technology for Disinfection of Different Water Systems, Microorganisms in Environmental Management, Springer, 2012, pp. 289–313.
  14. A. Kraft, Electrochemical water disinfection: a short review, Platinum Met. Rev., 52 (2008) 177–185.
  15. E. Victoria, Guidelines for Environmental Management: Disinfection of Treated Wastewater, Environmental Protection Authority Victoria, 2002.
  16. N. Balakliets, T. Balakliets, V. Zozulia, V. Oleshchenko, A. Tsyganenko, Sensitivity to antibiotics and the disinfectant chloramine of Staphylococci isolated from healthy and sick persons, Antibiot. Khimioter., 34 (1989) 38–42.
  17. L.S. Heathman, G. Pierce, P. Kabler, Resistance of various strains of E. typhi and coli aerogenes to chlorine and chloramine, Public Health Rep.51 (1936) 1367–1387.
  18. C. Lakkis, S.M. Fleiszig, Resistance of Pseudomonas aeruginosa isolates to hydrogel contact lens disinfection correlates with cytotoxic activity, J. Clin. Microbiol., 39 (2001) 1477–1486.
  19. G. Sundheim, S. Langsrud, E. Heir, A. Holck, Bacterial resistance to disinfectants containing quaternary ammonium compounds, Int. Biodeterior. Biodegrad., 41 (1998) 235–239.
  20. M.W. LeChevallier, C.D. Cawthon, R.G. Lee, Inactivation of biofilm bacteria, Appl. Environ. Microbiol., 54 (1988) 2492–2499.
  21. W.C. Summers, Bacteriophage research: early history, Syst. Biol. Appl., (2005) 5–27.
  22. H. Abdulla, I. Khafagi, M.A. El-Kareem, A. Dewedar, Bacteriophages in engineered wetland for domestic wastewater treatment, Res. J. Microbiol., 2 (2007) 889–899.
  23. S. Withey, E. Cartmell, L. Avery, T. Stephenson, Bacteriophages— potential for application in wastewater treatment processes, Sci. Total Environ., 339 (2005) 1–18.
  24. A. Havelaar, Bacteriophages as model viruses in water quality control, Water Res., 25 (1991) 529–545.
  25. A.A. Elshayeb, The impact of bacteriophages in bacteria removal associated with soba stabilisation station efficiency, Afr. J. Microbiol. Res., 4 (2010) 233–239.
  26. T. Marks, R. Sharp, Bacteriophages and biotechnology: a review, J. Chem. Technol. Biotechnol., 75 (2000) 6–17.
  27. A. Sulakvelidze, Z. Alavidze, J.G. Morris, Bacteriophage therapy, Antimicrob. Agents Chemother., 45 (2001) 649–659.
  28. K. Monsur, M. Rahman, F. Huq, M. Islam, R. Northrup, N. Hirschhorn, Effect of massive doses of bacteriophage on excretion of vibrios, duration of diarrhoea and output of stools in acute cases of cholera, Bull. World Health Organ., 42 (1970) 723–732.
  29. R. Araujo, J. Lasobras, A. Puig, F. Lucena, J. Jofre, Abundance of bacteriophages of enteric bacteria in different fresh water environments, Water Sci. Technol., 35 (1997) 125–128.
  30. P. Legnani, E. Leoni, D. Lev, R. Rossi, G. Villa, P. Bisbini, Distribution of indicator bacteria and bacteriophages in shellfish and shellfish-growing waters, J. Appl. Microbiol., 85 (1998) 790–798.
  31. G. De Luca, R. Sacchetti, F. Zanetti, E. Leoni, Comparative study on the efficiency of peracetic acid and chlorine dioxide at low doses in the disinfection of urban wastewaters, Ann. Agric. Environ. Med., 15 (2008) 217–224.
  32. G. De Luca, R. Sacchetti, E. Leoni, F. Zanetti, Removal of indicator bacteriophages from municipal wastewater by a fullscale membrane bioreactor and a conventional activated sludge process: implications to water reuse, Bioresour. Technol., 129 (2013) 526–531.
  33. J. Ottoson, Comparative Analysis of Pathogen Occurrence in Wastewater: Management Strategies for Barrier Function and Microbial Control, KTH, SE-100 44 Stockholm, 2005.
  34. A.M. Nasser, S.D. Oman, Quantitative assessment of the inactivation of pathogenic and indicator viruses in natural water sources, Water Res., 33 (1999) 1748–1752.
  35. D. Periasamy, A. Sundaram, A novel approach for pathogen reduction in wastewater treatment, J. Environ. Health Sci. Eng., 11 (2013) 12.
  36. J.P. Higgins, S. Higgins, K. Guenther, W. Huff, A. Donoghue, D. Donoghue, B. Hargis, Use of a specific bacteriophage treatment to reduce Salmonella in poultry products, Poultr. Sci., 84 (2005) 1141–1145.
  37. T. Yasunori, M. Katsunori, Y. Masatoshi, M. Masatomo, H. Katsutoshi, U. Hajime, Fate of coliphage in a wastewater treatment process, J. Biosci. Bioeng., 94 (2002) 172–174.
  38. K. Tait, L. Skillman, I. Sutherland, The efficacy of bacteriophage as a method of biofilm eradication, Biofouling, 18 (2002) 305–311.
  39. M. Sharma, J.R. Patel, W.S. Conway, S. Ferguson, A. Sulakvelidze, Effectiveness of bacteriophages in reducing Escherichia coli O157:H7 on fresh-cut cantaloupes and lettuce, J. Food Prot., 72 (2009) 1481–1485.
  40. I.T. Kudva, S. Jelacic, P.I. Tarr, P. Youderian, C.J. Hovde, Biocontrol of Escherichia coli O157 with O157-specific bacteriophages, Appl. Environ. Microbiol., 65 (1999) 3767–3773.
  41. S. Sillankorva, P. Neubauer, J. Azeredo, Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens, BMC Biotechnol., 8 (2008) 80.
  42. S. Hertwig, A. Popp, B. Freytag, R. Lurz, B. Appel, Generalized transduction of small Yersinia enterocolitica plasmids, Appl. Environ. Microbiol., 65 (1999) 3862–3866.
  43. J. Thomas, J.A. Soddell, D. Kurtböke, Fighting foam with phages? Water Sci. Technol., 46 (2002) 511–518.
  44. M. McLaughlin, M. Balaa, J. Sims, R. King, Isolation of bacteriophages from swine effluent lagoons, J. Environ. Qual., 35 (2006) 522–528.
  45. S.M. Faruque, N. Chowdhury, R. Khan, M.R. Hasan, J. Nahar, M.J. Islam, S. Yamasaki, A. Ghosh, G.B. Nair, D.A. Sack, Shigella dysenteriae type 1-specific bacteriophage from environmental waters in Bangladesh, Appl. Environ. Microbiol., 69 (2003) 7028–7031.
  46. A. Kęsik-Szeloch, Z. Drulis-Kawa, B. Weber-Dąbrowska, J. Kassner, G. Majkowska-Skrobek, D. Augustyniak, M. Łusiak-Szelachowska, M. Żaczek, A. Górski, A.M. Kropinski, Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae, Virol. J., 10 (2013) 100.
  47. C. Tartera, J. Jofre, Bacteriophages active against Bacteroides fragilis in sewage-polluted waters, Appl. Environ. Microbiol., 53 (1987) 1632–1637.
  48. S. Camprubí, S. Merino, V.-J. Benedí, J.M. Tomás, Isolation and characterization of bacteriophage FC3-10 from Klebsiella spp, FEMS Microbiol. Lett., 83 (1991) 291–297.
  49. K. Verthé, S. Possemiers, N. Boon, M. Vaneechoutte, W. Verstraete, Stability and activity of an Enterobacter aerogenesspecific bacteriophage under simulated gastro-intestinal conditions, Appl. Microbiol. Biotechnol., 65 (2004) 465–472.
  50. W.N. Chaudhry, I.U. Haq, S. Andleeb, I. Qadri, Characterization of a virulent bacteriophage LK1 specific for Citrobacter freundii isolated from sewage water, J. Basic Microbiol., 54 (2014) 531–541.
  51. X. Zhao, S. Huang, J. Zhao, X. He, E. Li, H. Li, W. Liu, D. Zou, X. Wei, X. Wang, Characterization of phiCFP-1, a virulent bacteriophage specific for Citrobacter freundii, J. Med. Virol., 88 (2016) 895–905.
  52. M. Jamal, W.N. Chaudhry, T. Hussain, C.R. Das, S. Andleeb, Characterization of new Myoviridae bacteriophage WZ1 against multi-drug resistant (MDR) Shigella dysenteriae, J. Basic Microbiol., 55 (2015) 420–431.
  53. L. Carson, S.P. Gorman, B.F. Gilmore, The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli, FEMS Immunol. Med. Microbiol., 59 (2010) 447–455.
  54. M. Day, Bacterial sensitivity to bacteriophage in the aquatic environment, Sci. Prog., 87 (2004) 179–191.
  55. J. Alisky, K. Iczkowski, A. Rapoport, N. Troitsky, Bacteriophages show promise as antimicrobial agents, J. Infect., 36 (1998) 5–15.
  56. E. Zhilenkov, V. Popova, D. Popov, L. Zavalsky, E. Svetoch, N. Stern, B. Seal, The ability of flagellum-specific Proteus vulgaris bacteriophage PV22 to interact with Campylobacter jejuni flagella in culture, Virol. J., 3 (2006) 50.
  57. V. Letchumanan, K.-G. Chan, P. Pusparajah, S. Saokaew, A. Duangjai, B.-H. Goh, N.-S. Ab Mutalib, L.-H. Lee, Insights into bacteriophage application in controlling Vibrio species, Front. Microbiol., 7 (2016) 1114.
  58. J.N. Housby, N.H. Mann, Phage therapy, Drug Discovery Today, 14 (2009) 536–540.
  59. S.M. Faruque, J.J. Mekalanos, Pathogenicity islands and phages in Vibrio cholerae evolution, Trends Microbiol., 11 (2003) 505–510.
  60. A.J. Synnott, Y. Kuang, M. Kurimoto, K. Yamamichi, H. Iwano, Y. Tanji, Isolation from sewage influent and characterization of novel S. aureus bacteriophages with wide host ranges and potent lytic capabilities, Appl. Environ. Microbiol., 75 (2009) 4483–4490.
  61. L. Bielke, S. Higgins, A. Donoghue, D. Donoghue, B. Hargis, Salmonella host range of bacteriophages that infect multiple genera, Poultr. Sci., 86 (2007) 2536–2540.
  62. P. Knezevic, D. Obreht, O. Petrovic, Isolation of Pseudomonas aeruginosa specific phages with broad activity spectra, Curr. Microbiol., 59 (2009) 173.
  63. S. Matsuzaki, M. Yasuda, H. Nishikawa, M. Kuroda, T. Ujihara, T. Shuin, Y. Shen, Z. Jin, S. Fujimoto, M. Nasimuzzaman, Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage ϕMR11, J. Infect. Dis., 187 (2003) 613–624.
  64. P. García, C. Madera, B. Martínez, A. Rodríguez, Biocontrol of Staphylococcus aureus in curd manufacturing processes using bacteriophages, Int. Dairy J., 17 (2007) 1232–1239.
  65. B. Kiefer, J.L. Dahl, Disruption of Mycobacterium smegmatis biofilms using bacteriophages alone or in combination with mechanical stress, Adv. Microbiol., 5 (2015) 699–710.
  66. Y. Turki, H. Ouzari, I. Mehri, A.B. Ammar, A. Hassen, Evaluation of a cocktail of three bacteriophages for the biocontrol of Salmonella of wastewater, Food Res. Int., 45 (2012) 1099–1105.
  67. S.B. Santos, A.M. Kropinski, P.-J. Ceyssens, H.-W. Ackermann, A. Villegas, R. Lavigne, V.N. Krylov, C.M. Carvalho, E.C. Ferreira, J. Azeredo, Genomic and proteomic characterization of the broad-host-range Salmonella phage PVP-SE1: creation of a new phage genus, J. Virol., 85 (2011) 11265–11273.
  68. I. Saint Girons, D. Margarita, P. Amouriaux, G. Baranton, First isolation of bacteriophages for a spirochaete: potential genetic tools for Leptospira, Res. Microbiol., 141 (1990) 1131–1138.
  69. E. Lammertyn, J.V. Voorde, E. Meyen, L. Maes, J. Mast, J. Anné, Evidence for the presence of Legionella bacteriophages in environmental water samples, Microb. Ecol., 56 (2008) 191–197.
  70. M. Zimmer, S. Scherer, M.J. Loessner, Genomic analysis of Clostridium perfringens bacteriophage φ3626, which integrates into guaA and possibly affects sporulation, J. Bacteriol., 184 (2002) 4359–4368.
  71. B.S. Seal, D.E. Fouts, M. Simmons, J.K. Garrish, R.L. Kuntz, R. Woolsey, K.M. Schegg, A.M. Kropinski, H.-W. Ackermann, G.R. Siragusa, Clostridium perfringens bacteriophages ΦCP39O and ΦCP26F: genomic organization and proteomic analysis of the virions, Arch. Virol., 156 (2011) 25–35.
  72. N.V. Volozhantsev, V.V. Verevkin, V.A. Bannov, V.M. Krasilnikova, V.P. Myakinina, E.L. Zhilenkov, E.A. Svetoch, N.J. Stern, B.B. Oakley, B.S. Seal, The genome sequence and proteome of bacteriophage ΦCPV1 virulent for Clostridium perfringens, Virus Res., 155 (2011) 433–439.
  73. H. Anany, L. Brovko, T. El Arabi, M. Griffiths, Bacteriophages as Antimicrobials in Food Products: Applications Against Particular Pathogens, Handbook of Natural Antimicrobials for Food Safety and Quality, 2014, p. 89.
  74. V. Ladero, C. Gómez-Sordo, E. Sánchez-Llana, B. del Rio, B. Redruello, M. Fernández, M.C. Martín, M.A. Alvarez, Q69 (an E. faecalis-infecting bacteriophage) as a biocontrol agent for reducing tyramine in dairy products, Front. Microbiol., 7 (2016) 445.
  75. T.R. Callaway, T.S. Edrington, A. Brabban, E. Kutter, L. Karriker, C. Stahl, E. Wagstrom, R.C. Anderson, K. Genovese, J. McReynolds, Occurrence of Salmonella-specific bacteriophages in swine feces collected from commercial farms, Foodborne Pathog. Dis., 7 (2010) 851–856.
  76. Y. Zhang, H.K. Hunt, Z. Hu, Application of bacteriophages to selectively remove Pseudomonas aeruginosa in water and wastewater filtration systems, Water Res., 47 (2013) 4507–4518.
  77. G. Goldman, J. Starosvetsky, R. Armon, Inhibition of biofilm formation on UF membrane by use of specific bacteriophages, J. Membr. Sci., 342 (2009) 145–152.
  78. H.-W. Ackermann, D. Tremblay, S. Moineau, Long-term bacteriophage preservation, WFCC Newsl., 38 (2004) 35–40.
  79. E. Jończyk, M. Kłak, R. Międzybrodzki, A. Górski, The influence of external factors on bacteriophages—review, Folia Microbiol. (Praha), 56 (2011) 191–200.
  80. M.D.C. Alonso, J. Rodríguez, J.J. Borrego, Characterization of marine bacteriophages isolated from the Alboran Sea (Western Mediterranean), J. Plankton Res., 24 (2002) 1079–1087.
  81. C.A. Suttle, Ecological, evolutionary, and geochemical consequences of viral infection of cyanobacteria and eukaryotic algae, Viral Ecol., 1 (2000) 247–296.
  82. Ø. Bergh, K.Y. BØrsheim, G. Bratbak, M. Heldal, High abundance of viruses found in aquatic environments, Nature, 340 (1989) 467–468.
  83. J. Jones, L. Jackson, B. Balogh, A. Obradovic, F. Iriarte, M. Momol, Bacteriophages for plant disease control, Annu. Rev. Phytopathol., 45 (2007) 245–262.
  84. S.J. Bach, T.A. McAllister, D.M. Veira, V.P. Gannon, R.A. Holley, Effect of bacteriophage DC22 on Escherichia coli O157:H7 in an artificial rumen system (Rusitec) and inoculated sheep, Anim. Res., 52 (2003) 89–101.
  85. M.A. Harding, D.M. O’Mullane, Water fluoridation and oral health, Acta Med. Acad, 42 (2013) 131.
  86. R. Lad, Biotechnology in Personal Care, CRC Press, 2006 (ISBN 9780824725341 – CAT# DK3044).
  87. V. Fischetti, L. Loomis, Use of Bacterial Phage Associated Lysing Enzymes for Treating Bacterial Infections of the Mouth and Teeth, Google Patents, 2002.
  88. L.Y. Leong, J. Kuo, C.-C. Tang, Disinfection of Wastewater Effluent: Comparison of Alternative Technologies, Water Environment Research Foundation, 2008.
  89. A. Anderson, R. Reimers, P. Dekernion, A brief review of the current status of alternatives of chlorine disinfection of water, Am. J. Public Health, 72 (1982) 1290–1293.
  90. A.A. Babaei, N. Alavi, G. Hassani, F. Yousefian, M. Shirmardi, L. Atari, Occurrence and related risk assessment of trihalomethanes in drinking water, Ahvaz, Iran, Fresenius Environ. Bull., 24 (2015) 4807–4815.
  91. S. Mukhopadhyay, R. Ramaswamy, Application of emerging technologies to control Salmonella in foods: a review, Food Res. Int., 45 (2012) 666–677.
  92. G. Andreottola, L. Baldassarre, C. Collivignarelli, R. Pedrazzani, P. Principi, C. Sorlini, G. Ziglio, A comparison among different methods for evaluating the biomass activity in activated sludge systems: preliminary results, Water Sci. Technol., 46 (2002) 413–417.
  93. M.H. Adams, Bacteriophages, Bacteriophages, New York (& London): Inter-science Publishers, 1959.
  94. J.A. Fuhrman, Marine viruses and their biogeochemical and ecological effects, Nature, 399 (1999) 541–548.
  95. R.E. Lenski, Dynamics of interactions between bacteria and virulent bacteriophage, Adv. Microb. Ecol., 10 (1988) 1–44.
  96. R.V. Miller, Environmental bacteriophage-host interactions: factors contribution to natural transduction, Antonie Van Leeuwenhoek, 79 (2001) 141–147.
  97. P. Hyman, S.T. Abedon, Bacteriophage host range and bacterial resistance, Adv. Appl. Microbiol., 70 (2010) 217–248.
  98. J.R. Saunders, H. Allison, C.E. James, A.J. McCarthy, R. Sharp, Phage-mediated transfer of virulence genes, J. Chem. Technol. Biotechnol., 76 (2001) 662–666.
  99. K.E. Wommack, R.R. Colwell, Virioplankton: viruses in aquatic ecosystems, Microbiol. Mol. Biol. Rev., 64 (2000) 69–114.
  100. Y. Feng, S. Ong, J. Hu, X. Tan, W. Ng, Effects of pH and temperature on the survival of coliphages MS2 and Qβ, J. Ind. Microbiol. Biotechnol., 30 (2003) 549–552.
  101. B. Leverentz, W.S. Conway, Z. Alavidze, W.J. Janisiewicz, Y. Fuchs, M.J. Camp, E. Chighladze, A. Sulakvelidze, Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study, J. Food Prot., 64 (2001) 1116–1121.
  102. M.R. Olson, R.P. Axler, R.E. Hicks, Effects of freezing and storage temperature on MS2 viability, J. Virol. Methods, 122 (2004) 147–152.
  103. M.G. Weinbauer, Ecology of prokaryotic viruses, FEMS Microbiol. Rev., 28 (2004) 127–181.
  104. S.A. Overman, D.M. Kristensen, P. Bondre, B. Hewitt, G.J. Thomas, Effects of virion and salt concentrations on the Raman signatures of filamentous phages fd, Pf1, Pf3, and PH75, Biochemistry, 43 (2004) 13129–13136.
  105. R.J. Payne, V.A. Jansen, Understanding bacteriophage therapy as a density-dependent kinetic process, J. Theor. Biol., 208 (2001) 37–48.
  106. Q. Yang, H. Zhao, B. Du, Bacteria and bacteriophage communities in bulking and non-bulking activated sludge in full-scale municipal wastewater treatment systems, Biochem. Eng. J., 119 (2017) 101–111.
  107. B. Wu, R. Wang, A.G. Fane, The roles of bacteriophages in membrane-based water and wastewater treatment processes: a review, Water Res., 110 (2017) 120–132.
  108. W. Fu, T. Forster, O. Mayer, J.J. Curtin, S.M. Lehman, R.M. Donlan, Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system, Antimicrob. Agents Chemother., 54 (2010) 397–404.
  109. B.K. Chan, S.T. Abedon, C. Loc-Carrillo, Phage cocktails and the future of phage therapy, Future Microbiol., 8 (2013) 769–783.
  110. S.P. Hooton, R.J. Atterbury, I.F. Connerton, Application of a bacteriophage cocktail to reduce Salmonella typhimurium U288 contamination on pig skin, Int. J. Food Microbiol., 151 (2011) 157–163.
  111. J.Y. Nale, J. Spencer, K.R. Hargreaves, A.M. Buckley, P. Trzepiński, G.R. Douce, M.R. Clokie, Bacteriophage combinations significantly reduce Clostridium difficile growth in vitro and proliferation in vivo, Antimicrob. Agents Chemother., 60 (2016) 968–981.
  112. A.S. Abdulamir, S.A. Jassim, R.R. Hafidh, F.A. Bakar, The potential of bacteriophage cocktail in eliminating methicillinresistant Staphylococcus aureus biofilms in terms of different extracellular matrices expressed by PIA, ciaA-D and FnBPA genes, Ann. Clin. Microbiol. Antimicrob., 14 (2015) 49.
  113. M.N. Perera, T. Abuladze, M. Li, J. Woolston, A. Sulakvelidze, Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods, Food Microbiol., 52 (2015) 42–48.
  114. E.C. Jensen, H.S. Schrader, B. Rieland, T.L. Thompson, K.W. Lee, K.W. Nickerson, T.A. Kokjohn, Prevalence of Broad-Host- Range Lytic Bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa, Appl. Environ. Microbiol., 64 (1998) 575–580.